Team:SDU-Denmark/Tour42

From 2014.igem.org

(Difference between revisions)
Line 17: Line 17:
<div class="popupImg alignCenter" style="width:500px">
<div class="popupImg alignCenter" style="width:500px">
   <img src="https://static.igem.org/mediawiki/2014/9/99/2014SDUoneprot5.png" style="width:500px" />
   <img src="https://static.igem.org/mediawiki/2014/9/99/2014SDUoneprot5.png" style="width:500px" />
-
Figure 1: Western blot showing E. coli wild-type and E. coli expressing OneProt at OD at 0.3, 0.8, 1.8 and an overnight  
+
Figure 1: Western blot showing <i>E. coli</i> wild-type and <i>E. coli</i> expressing OneProt at OD at 0.3, 0.8, 1.8 and an overnight  
culture. The membrane has been exposed for 10 minutes.
culture. The membrane has been exposed for 10 minutes.
</div>
</div>
Line 43: Line 43:
To test what effect the expression of OneProt have on <i>E. coli</i> we set up a growth experiment
To test what effect the expression of OneProt have on <i>E. coli</i> we set up a growth experiment
-
measuring OD over time on the growth of <i>E. coli</i> K12 MG1655 WT, odor-free E. coli YYC912, <i>E. coli</i> K12  
+
measuring OD over time on the growth of <i>E. coli</i> K12 MG1655 WT, odor-free <i>E. coli</i> YYC912, <i>E. coli</i> K12  
expressing OneProt and with an empty vector.<br><br>
expressing OneProt and with an empty vector.<br><br>
Line 62: Line 62:
by pTet (+/-LVA). It is, however, shown that the cells are growing in despite of their stressed metabolism  
by pTet (+/-LVA). It is, however, shown that the cells are growing in despite of their stressed metabolism  
and it is possible that the expression of OneProt can be controlled by pTet controlled by TetR although  
and it is possible that the expression of OneProt can be controlled by pTet controlled by TetR although  
-
the TetR(+LVA) seems more favorable. It can also be seen that the growth of E. coli YYC912 is comprised  
+
the TetR(+LVA) seems more favorable. It can also be seen that the growth of <i>E. coli</i> YYC912 is comprised  
compared to the K12 wild-type which also contributes to possible difficulties in expressing OneProt in the  
compared to the K12 wild-type which also contributes to possible difficulties in expressing OneProt in the  
odor-free YYC912 strain. However, the possibility still exists.<br><br>
odor-free YYC912 strain. However, the possibility still exists.<br><br>
Line 96: Line 96:
</p>
</p>
-
<div class="popupImg alignCenter" style="width:400px" target="_blank" title="Figure 5:Picture of C. elegans fed with E. coli K12 MG1655 expressing OneProt.">
+
<div class="popupImg alignCenter" style="width:400px" target="_blank" title="Figure 5:Picture of C. elegans fed with <i>E. coli</i> K12 MG1655 expressing OneProt.">
   <img src="https://static.igem.org/mediawiki/2014/b/bc/2014SDUresults10.jpg" style="width:400px" />
   <img src="https://static.igem.org/mediawiki/2014/b/bc/2014SDUresults10.jpg" style="width:400px" />
-
Figure 5: Picture of C. elegans fed with E. coli K12 MG1655 expressing OneProt.
+
Figure 5: Picture of C. elegans fed with <i>E. coli</i> K12 MG1655 expressing OneProt.
</div>
</div>
<br><br>
<br><br>

Revision as of 20:35, 17 October 2014

OneProt

The pTet expression system and limonene synthase construct is evolved around one thing: the OneProt. We have made the pTet-OneProt construct in order for us to synthesize a nutritional protein with the correct ratio of essential amino acids and the correct ratio between essential and non-essential amino acids. The device is found as Bba_K1475000.

The protein is self-designed, so we wanted to test if the protein were expressed in E. coli K12 MG1655, by the use of Western blotting. The western blot was blottet with E. coli K12 MG1655 wild-type and E. coli expressing OneProt at different OD measures.

Figure 1: Western blot showing E. coli wild-type and E. coli expressing OneProt at OD at 0.3, 0.8, 1.8 and an overnight culture. The membrane has been exposed for 10 minutes.


The protein has a 3xFLAG tag and since bonds are showing, OneProt is expressed. However, from this western blot, we cannot see if the protein has been cut, just that it is expressed.

Figure 2: Coomassie staining of E. coli expressing OneProt at early exponential phase (OD600=0.3), late exponential phase (OD600=1.5), stationary phase (OD=2.5) and an overnight culture using an empty vector as control. In order to check that we had the protein expressed in its full length, we did a coomassie stain on a SDS- page. Here we also wanted to receive information on the expression of the protein at different growth stages of E. coli. We analyzed samples from early exponential phase (OD600=0.3), late exponential phase (OD600=1.5), stationary phase (OD=2.5) and an overnight culture. As a control, E. coli with an empty vector (PSC1C3) was used.

OneProt has a molecular weight of approximately 53.7 kDa. Unfortunately, there is no clear bond at this length. However, there is a bond at approximately 25 kDa, which is not detected in the control. We cannot conclude what gives rise to the band, but it might be a cellular response to an unfolded protein.

To test what effect the expression of OneProt have on E. coli we set up a growth experiment measuring OD over time on the growth of E. coli K12 MG1655 WT, odor-free E. coli YYC912, E. coli K12 expressing OneProt and with an empty vector.

Figure 3: Growth curve illustrating the growth of E. coli K12 MG1655 WT, odor-free E. coli YYC912, E. coli K12 expressing OneProt and with an empty vector. From the growth curve, it is shown that the expression of OneProt stresses the metabolism a lot compared to the E. coli K12 wild-type. In addition to this, the metabolism of YYC912 is also quite stressed compared to the K12 wild-type. Despite the stressed metabolism of the two strains, the expression of OneProt increases over time as does the growth of YYC912.

Comparing the growth curve of E. coli K12 expressing OneProt, TetR(+LVA), TetR(no LVA) and odor-free E. coli YYC912 it is seen that the metabolism of E. coli expressing OneProt and TetR is stressed compared to the wild-type which means that it might be difficult to have OneProt expressed in high amounts controlled by pTet (+/-LVA). It is, however, shown that the cells are growing in despite of their stressed metabolism and it is possible that the expression of OneProt can be controlled by pTet controlled by TetR although the TetR(+LVA) seems more favorable. It can also be seen that the growth of E. coli YYC912 is comprised compared to the K12 wild-type which also contributes to possible difficulties in expressing OneProt in the odor-free YYC912 strain. However, the possibility still exists.

Figure 4: Growth curves showing E. coli K12 expressing OneProt, TetR(+LVA), TetR(no LVA), wild-type and odor-free E. coli YYC912. Because OneProt is self-designed, we wanted to test if the protein has any toxicity. To do so, we fed Caenorhabditis elegans (C. elegans) with E. coli K12 MG1655 containing an empty vector and a vector expressing OneProt on separate plates. On both plates, 20 C. elegans were tested. Articles recommend using heat chock assay for 7 hours: 1 hour at 35° C followed by 1 hour at 22°C, repeated. Source: Mosbech, M., et al.: Functional Loss of Two Ceramide Synthases Elicits Autophagy-Dependent Lifespan Extension in C. elegans.: PLoS ONE, 2013. 8 vol:7. (Link)   Source: Rodriguez, M., et al.:Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends in Genetics, 2013. Vol: 29, 6, p. 367-374. (Link)

After approximately 5 hours still no effects on C. elegans was detectable. Therefore we decided to stress C. elegans a little more, incubating them in 2 hours at 35°C followed by 1 hour at 22°C, repeated. After 7 hours, every C. elegans on both plates were alive. Thus we conclude that the protein has no toxic effect.

Figure 5: Picture of C. elegans fed with E. coli K12 MG1655 expressing OneProt.