Team:SDU-Denmark/Tour23

From 2014.igem.org

(Difference between revisions)
 
(44 intermediate revisions not shown)
Line 5: Line 5:
<h3>System design</h3>
<h3>System design</h3>
<p class='intro'>
<p class='intro'>
-
<font color="3397FE">Think big – safe the world!</font>
+
<font color="3397FE">"You have to think anyway, so why not think big?" - <b>Donald Trump</b></font>
</p>
</p>
<h4>Original thought</h4>
<h4>Original thought</h4>
<p>
<p>
-
<span class="intro">The original design of</span> the system making up the Edible coli contains the four elements listed below, and thus is a K12 MG1655 strain of <i>Escherichia coli</i>:
+
<span class="intro">The original design</span> of the system making up the Edible coli contains the four elements listed below, in a K12 MG1655 strain of <i>Escherichia coli</i>:<br><br>
<ol style="font-weight: bold;">
<ol style="font-weight: bold;">
<li> <span style="font-weight: normal;"><span class="intro">Excreting cellulases for the degradation of cellulose to glucose:</span><br>
<li> <span style="font-weight: normal;"><span class="intro">Excreting cellulases for the degradation of cellulose to glucose:</span><br>
Cellulose (C<sub>6</sub>H<sub>10</sub>O<sub>5</sub>)<sub>n</sub> consists of &beta;-1,4 linked D-glucose units. For the Edible coli to gain nutrients
Cellulose (C<sub>6</sub>H<sub>10</sub>O<sub>5</sub>)<sub>n</sub> consists of &beta;-1,4 linked D-glucose units. For the Edible coli to gain nutrients
from cellulose in the form of glucose units, the &beta;-glucosidic bonds in-between must be broken by  
from cellulose in the form of glucose units, the &beta;-glucosidic bonds in-between must be broken by  
-
hydrolysis. For this degradation, three enzymatic activities are needed by the enzymes, collectively  
+
hydrolysis. For this degradation three enzymatic activities are needed by the enzymes, collectively  
known as cellulases: Endoglucanase, exoglucanase and &beta;-glucosidase. Endoglucanase hydrolyses  
known as cellulases: Endoglucanase, exoglucanase and &beta;-glucosidase. Endoglucanase hydrolyses  
internal &beta;-1,4 glucosidic bonds in the cellulose fiber, while exoglucanase hydrolyses the external  
internal &beta;-1,4 glucosidic bonds in the cellulose fiber, while exoglucanase hydrolyses the external  
Line 26: Line 26:
<a href="http://mmbr.asm.org/content/66/3/506.long" target="_blank">(Link)</a></span><br><br>
<a href="http://mmbr.asm.org/content/66/3/506.long" target="_blank">(Link)</a></span><br><br>
-
<span class="intro">Reaction and biobricks needed</span> for the reaction to run (Edinburgh, 2008):<br><br>
+
<span class="intro">Reaction and biobricks needed</span> for the reaction to run (BioBricks produced by the Edinburgh iGEM team 2008):<br><br>
-
<div class="popupImg alignCenter" style="width:500px">
+
-
  <img src="https://static.igem.org/mediawiki/2014/d/db/2014SDUsystem7.png" style="width:500px" />
+
-
Endoglucanase: cenA (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K118023" target="_blank">BBa_K118023</a>), exoglucanase: cex (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K118022" target="_blank">BBa_K118022</a>), and
+
-
β-glucosidase: bgIX (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K118028" target="_blank">BBa_K118028</a>).
+
 +
 +
<div class="popupImg alignCenter" style="width:600px" target="_blank" title="The design of our system.">
 +
  <img src="https://static.igem.org/mediawiki/2014/d/db/2014SDUsystem7.png" style="width:600px" />
 +
Figure 1: Endoglucanase: cenA (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K118023" target="_blank">BBa_K118023</a>), exoglucanase: cex (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K118022" target="_blank">BBa_K118022</a>), and
 +
β-glucosidase: bgIX (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K118028" target="_blank">BBa_K118028</a>).
</div>
</div>
 +
<br>
<br>
</span></li>
</span></li>
Line 39: Line 41:
Among others, using the glucose from cellulose degradation as a nutrition source, the Edible coli
Among others, using the glucose from cellulose degradation as a nutrition source, the Edible coli
will be able to produce a high quantity of essential amino acids, incorporated into a self-designed  
will be able to produce a high quantity of essential amino acids, incorporated into a self-designed  
-
protein.<br><br>
+
protein.<br>
<p class='intro'>
<p class='intro'>
<font color="3397FE">One protein to rule them all!</font>
<font color="3397FE">One protein to rule them all!</font>
</p>
</p>
-
<span class="intro">The OneProt design:</span><br>
+
<span class="intro">The OneProt design:</span><br><br>
<table style="width:800px">
<table style="width:800px">
Line 49: Line 51:
     <td>
     <td>
-
<a class="popupImg alignCenter" style="width:230px" target="_blank"  href="https://static.igem.org/mediawiki/2014/4/43/2014SDUsystem8.png" title="Table 1: The optimal rates of essential amino acids.">
+
<a class="popupImg alignCenter" style="width:230px" target="_blank"  href="https://static.igem.org/mediawiki/2014/4/43/2014SDUsystem8.png" title="Figure 2: The optimal rates of essential amino acids.">
   <img src="https://static.igem.org/mediawiki/2014/4/43/2014SDUsystem8.png" style="width:230px" />
   <img src="https://static.igem.org/mediawiki/2014/4/43/2014SDUsystem8.png" style="width:230px" />
-
Table 1: The optimal rates of essential amino acids.
+
Figure 2: The optimal rates of essential amino acids.
</a>
</a>
</td>
</td>
<td>
<td>
-
<a class="popupImg alignCenter" style="width:230px" target="_blank" href="https://static.igem.org/mediawiki/2014/1/1e/2014SDUsystem9.png" title="Table 2: The composition of essential amino acids.">
+
<a class="popupImg alignCenter" style="width:230px" target="_blank" href="https://static.igem.org/mediawiki/2014/1/1e/2014SDUsystem9.png" title="Figure 3: The composition of essential amino acids.">
   <img src="https://static.igem.org/mediawiki/2014/1/1e/2014SDUsystem9.png" style="width:230px" />
   <img src="https://static.igem.org/mediawiki/2014/1/1e/2014SDUsystem9.png" style="width:230px" />
-
Table 2: The composition of essential amino acids.
+
Figure 3: The composition of essential amino acids.
</a>
</a>
</td>
</td>
<td>
<td>
-
<a class="popupImg alignCenter" style="width:230px" target="_blank"  href="https://static.igem.org/mediawiki/2014/f/f2/2014SDUsystem10.png" title="Table 3: The composition of non-essential amino acids.">
+
<a class="popupImg alignCenter" style="width:230px" target="_blank"  href="https://static.igem.org/mediawiki/2014/f/f2/2014SDUsystem10.png" title="Figure 4: The composition of non-essential amino acids.">
   <img src="https://static.igem.org/mediawiki/2014/f/f2/2014SDUsystem10.png" style="width:230px" />
   <img src="https://static.igem.org/mediawiki/2014/f/f2/2014SDUsystem10.png" style="width:230px" />
-
Table 3: The composition of non-essential amino acids.
+
Figure 4: The composition of non-essential amino acids.
</a>
</a>
</td>
</td>
Line 69: Line 71:
</table>
</table>
<br>
<br>
-
<span class="intro">The nutritional protein consists</span> of the right ratio between essentials amino acids, and between
+
<span class="intro">The nutritional protein consists of</span> the right amount of essential and non-essential amino acids including the right ratio of the essential amino acids, needed in the daily diet, as recommended by the WHO/
-
essential and non-essential amino acids, needed in the daily diet, as recommended by the WHO/
+
FAO/UNU Expert  
FAO/UNU Expert  
<span class="sourceReference">Consultation.</span>
<span class="sourceReference">Consultation.</span>
Line 79: Line 80:
<a href="http://whqlibdoc.who.int/trs/who_trs_935_eng.pdf" target="_blank">(Link)</a></span>
<a href="http://whqlibdoc.who.int/trs/who_trs_935_eng.pdf" target="_blank">(Link)</a></span>
The optimal rates of essential amino acids are
The optimal rates of essential amino acids are
-
shown in table 1.<br><br>
+
shown in figure 2.<br><br>
 +
 
 +
<a class="popupImg alignRight" style="width:250px" target="_blank" href="https://static.igem.org/mediawiki/2014/9/9e/2014SDUsystem11.png" title="Figure 5: Predicted structure of the OneProt.">
 +
  <img src="https://static.igem.org/mediawiki/2014/9/9e/2014SDUsystem11.png" style="width:250px" />
 +
Figure 5: Predicted structure of the OneProt.
 +
</a>
<span class="intro">The protein sequence encodes</span> 480 amino acids in total. The amount of essential amino acids
<span class="intro">The protein sequence encodes</span> 480 amino acids in total. The amount of essential amino acids
is based on the recommended ratio between essential and non-essential amino acids, which  
is based on the recommended ratio between essential and non-essential amino acids, which  
should be  
should be  
-
<span class="sourceReference">27.7 %.</span>
+
<span class="sourceReference">27.7%.</span>
<span class="tooltip">
<span class="tooltip">
   <span class="tooltipHeader">Source:</span>
   <span class="tooltipHeader">Source:</span>
     WHO/FAO/UNU Expert Consultation: Protein and Amino Acid Requirements in Human Nutrition. United Nations University, 2002. No. 935, p. 150.
     WHO/FAO/UNU Expert Consultation: Protein and Amino Acid Requirements in Human Nutrition. United Nations University, 2002. No. 935, p. 150.
<a href="http://whqlibdoc.who.int/trs/who_trs_935_eng.pdf" target="_blank">(Link)</a></span>
<a href="http://whqlibdoc.who.int/trs/who_trs_935_eng.pdf" target="_blank">(Link)</a></span>
-
The rates of given essential amino acids are based on the recommendations
+
The ratios of given essential amino acids are based on the recommendations
-
in table 1, and the rates of given non-essential amino acids are based on how big an amount is used  
+
in figure 2, and the ratios of given non-essential amino acids are based on how large an amount is used  
and processed in the body, and whether they can be formed from essential amino acids or not.<br><br>
and processed in the body, and whether they can be formed from essential amino acids or not.<br><br>
-
<span class="intro">In all, the protein</span> comprises 136 essential (28.3 %) and 344 non-essential (71.6 %) amino acids,  
+
<span class="intro">In all, the protein comprises</span> 136 essential (28.3%) and 344 non-essential (71.6%) amino acids,  
-
with the distributions shown in table 2 and table 3. To make sure the design would not contain any  
+
with the distributions shown in figure 3 and figure 4. To make sure the design would not contain any  
harmful protein structures or misfold, the sequence has been shuffled, codon optimized for <i>E. coli</i>,
harmful protein structures or misfold, the sequence has been shuffled, codon optimized for <i>E. coli</i>,
K12 MG1655, checked for restriction sites and its structure has been predicted, using <a href="http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index" target="_blank">Phyre<sup>2</sup>.</a><br><br>
K12 MG1655, checked for restriction sites and its structure has been predicted, using <a href="http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index" target="_blank">Phyre<sup>2</sup>.</a><br><br>
Line 100: Line 106:
<span class="intro">The expression of this</span> coding sequence (basic part: <a href="http://parts.igem.org/
<span class="intro">The expression of this</span> coding sequence (basic part: <a href="http://parts.igem.org/
Part:BBa_K1475001" target="_blank">BBa_K1475001</a>), and thus the synthesis of nutritional protein will be regulated by the  
Part:BBa_K1475001" target="_blank">BBa_K1475001</a>), and thus the synthesis of nutritional protein will be regulated by the  
-
repressible promoter, pTet (<a href="http://parts.igem.org/Part:BBa_R0040" target="_blank">BBa_R0040</a>):
+
repressible promoter, pTet (<a href="http://parts.igem.org/Part:BBa_R0040" target="_blank">BBa_R0040</a>):<br><br>
</p>
</p>
<div class="popupImg alignCenter" style="width:500px">
<div class="popupImg alignCenter" style="width:500px">
-
   <img src="https://static.igem.org/mediawiki/2014/e/e5/2014SDUsystem1.png" style="width:500px" />
+
   <img src="https://static.igem.org/mediawiki/2014/0/09/2014SDUsystem12.png" style="width:500px" />
-
Expression of OneProt regulated by repressible Tet promoter.
+
Figure 6: Expression of OneProt regulated by repressible Tet promoter.
</div><br>
</div><br>
<p>
<p>
-
<span class="intro">The activity of pTet</span> regulated by the repressor protein, TetR (<a href="http://parts.igem.org/Part:BBa_C0040" target="_blank">BBa_C0040</a>), should be tested with and without LVA-tag by regulating the expression of GFP:
+
<span class="intro">The activity of pTet</span> regulated by the repressor protein, TetR (<a href="http://parts.igem.org/Part:BBa_C0040" target="_blank">BBa_C0040</a>), should be tested with and without LVA-tag by regulating the expression of GFP:<br><br>
</p>
</p>
<div class="popupImg alignCenter" style="width:400px">
<div class="popupImg alignCenter" style="width:400px">
   <img src="https://static.igem.org/mediawiki/2014/6/60/2014SDUsystem2.png" style="width:400px"/>
   <img src="https://static.igem.org/mediawiki/2014/6/60/2014SDUsystem2.png" style="width:400px"/>
-
Expression of GFP regulated by repressible Tet promoter: TetR(+LVA) vs. TetR(no LVA).
+
Figure 7: Expression of GFP regulated by repressible Tet promoter: TetR(+LVA) vs. TetR(no LVA).
</div><br>
</div><br>
<p>
<p>
Line 122: Line 128:
<li><span style="font-weight: normal;">
<li><span style="font-weight: normal;">
<span class="intro">Synthesizing &omega;3- and &omega;6 fatty acids:</span><br>
<span class="intro">Synthesizing &omega;3- and &omega;6 fatty acids:</span><br>
-
<a class="popupImg alignRight" style="width:250px" target="_blank" href="https://static.igem.org/mediawiki/2014/0/08/2014SDUsystem3.PNG" title="Figure 1: Conventional biosynthetic pathway for the production of &omega;3- and &omega;6 fatty acids.">
+
<a class="popupImg alignRight" style="width:250px" target="_blank" href="https://static.igem.org/mediawiki/2014/0/08/2014SDUsystem3.PNG" title="Figure 8: Conventional biosynthetic pathway for the production of &omega;3- and &omega;6 fatty acids.">
   <img src="https://static.igem.org/mediawiki/2014/0/08/2014SDUsystem3.PNG" style="width:250px" />
   <img src="https://static.igem.org/mediawiki/2014/0/08/2014SDUsystem3.PNG" style="width:250px" />
-
Figure 1: Conventional biosynthetic pathway for the production of &omega;3- and &omega;6 fatty  
+
Figure 8: Conventional biosynthetic pathway for the production of &omega;3- and &omega;6 fatty  
<span class="sourceReference">acids.</span>
<span class="sourceReference">acids.</span>
<span class="tooltip">
<span class="tooltip">
Line 131: Line 137:
pathway into transgenic plants. Journal of Experimental Botany, 2011. Vol. 63:7, p. 2397-2410.</span>
pathway into transgenic plants. Journal of Experimental Botany, 2011. Vol. 63:7, p. 2397-2410.</span>
</a>
</a>
-
Stearic acid (18:0) is part of the metabolism of E. coli. A &Delta;9 desaturase can convert stearic acid  
+
Stearic acid (18:0) is part of the metabolism of <i>E. coli</i>. A &Delta;9 desaturase can convert stearic acid  
into oleic acid (18:1<sup>&Delta;cis:9</sup>), a &Delta;12 desaturase can convert oleic acid into linoleic acid (18:2<sup>&Delta;cis:9,12</sup>), which is an  
into oleic acid (18:1<sup>&Delta;cis:9</sup>), a &Delta;12 desaturase can convert oleic acid into linoleic acid (18:2<sup>&Delta;cis:9,12</sup>), which is an  
essential &omega;6 fatty acid, and a &Delta;15 desaturase can convert linoleic acid into α-linoleic acid (18:3<sup>&Delta;cis:9,12,15</sup>),  
essential &omega;6 fatty acid, and a &Delta;15 desaturase can convert linoleic acid into α-linoleic acid (18:3<sup>&Delta;cis:9,12,15</sup>),  
which is an essential &omega;3 fatty acid, ALA.<br><br>  
which is an essential &omega;3 fatty acid, ALA.<br><br>  
-
<span class="intro">A conventional biosynthetic pathway</span> from linoleic and α-
+
<span class="intro">A conventional biosynthetic pathway</span> from linoleic and α-linoleic acid precursors to other &omega;3- and &omega;6 fatty acid products is shown in  
-
linoleic acid precursors, to other &omega;3- and &omega;6 fatty acid products, is shown in  
+
<span class="sourceReference">figure 1.</span>
<span class="sourceReference">figure 1.</span>
<span class="tooltip">
<span class="tooltip">
Line 147: Line 152:
ALA can be converted into both EPA and
ALA can be converted into both EPA and
DHA in the human body, all important in cellular  
DHA in the human body, all important in cellular  
-
<span class="sourceReference">function.</span>
+
<span class="sourceReference">functions.</span>
<span class="tooltip">
<span class="tooltip">
   <span class="tooltipHeader">Source:</span>
   <span class="tooltipHeader">Source:</span>
Line 160: Line 165:
   Sakamoto, T., et al.: Δ9 Acyl-Lipid Desaturases of Cyanobacteria. The Journal of Boilogical Chemistry, 1994. Vol. 269:14, p. 25576-25580.  
   Sakamoto, T., et al.: Δ9 Acyl-Lipid Desaturases of Cyanobacteria. The Journal of Boilogical Chemistry, 1994. Vol. 269:14, p. 25576-25580.  
<a href="http://www.jbc.org/content/269/41/25576.full.pdf+html" target="_blank">(Link)</a></span>
<a href="http://www.jbc.org/content/269/41/25576.full.pdf+html" target="_blank">(Link)</a></span>
 +
 +
<span class="sourceReference">&nbsp;</span>
<span class="tooltip">
<span class="tooltip">
-
<span class="sourceReference"><i>E. coli</i>.</span>
 
   <span class="tooltipHeader">Source:</span>
   <span class="tooltipHeader">Source:</span>
-
   Wasa, H., et al.: The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase. Journal of Bacteriology, 1993. Vol. 175:18, p. 6056-6058.   
+
   Wada, H., et al.: The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase. Journal of Bacteriology, 1993. Vol. 175:18, p. 6056-6058.   
<a href="http://jb.asm.org/content/175/18/6056.long" target="_blank">(Link)</a></span>
<a href="http://jb.asm.org/content/175/18/6056.long" target="_blank">(Link)</a></span>
-
The biobricks needed for the conversion of stearic acid into α-linoleic acid (Manchester, 2013) - The expression of these three enzymes will be regulated by the repressible promoter, pLac (<a href="http://parts.igem.org/Part:BBa_R0010" target="_blank">BBa_R0010</a>):<br>
+
These three biobricks are needed for the conversion of stearic acid into α-linoleic acid (Manchester, 2013) - The expression of these three enzymes will be regulated by the repressible promoter, pLac (<a href="http://parts.igem.org/Part:BBa_R0010" target="_blank">BBa_R0010</a>):<br><br>
</p>
</p>
<div class="popupImg alignCenter" style="width:500px">
<div class="popupImg alignCenter" style="width:500px">
   <img src="https://static.igem.org/mediawiki/2014/2/23/2014SDUsystem4.png" style="width:500px" />
   <img src="https://static.igem.org/mediawiki/2014/2/23/2014SDUsystem4.png" style="width:500px" />
-
Expression of &Delta;9 desaturase (<a href="http://parts.igem.org/Part:BBa_K1027001" target="_blank">BBa_K1027001</a>), &Delta;12 desaturase (<a href="http://parts.igem.org/Part:BBa_K1027002" target="_blank">BBa_K1027002</a>) and &Delta;15 desaturase, all regulated by the repressible Lac promoter.
+
Figure 9: Expression of &Delta;9 desaturase (<a href="http://parts.igem.org/Part:BBa_K1027001" target="_blank">BBa_K1027001</a>), &Delta;12 desaturase (<a href="http://parts.igem.org/Part:BBa_K1027002" target="_blank">BBa_K1027002</a>) and &Delta;15 desaturase, all regulated by the repressible Lac promoter.
</div><br>
</div><br>
<p>
<p>
-
<span class="intro">Δ12 desaturase is also</span> found in <i>Caenorhabditis elegans</i> (<a href="http://parts.igem.org/
+
<span class="intro">Δ12 desaturase is also found</span> in <i>Caenorhabditis elegans</i> (<a href="http://parts.igem.org/
Part:BBa_K1475002" target="_blank">BBa_K1475002</a>).<br><br>
Part:BBa_K1475002" target="_blank">BBa_K1475002</a>).<br><br>
-
<span class="intro">The expression of nutritional</span> protein, OneProt, and desaturases for the biosynthesis of essential  
+
<span class="intro">The expression of nutritional protein,</span> OneProt, and desaturases for the biosynthesis of essential  
-
fatty acids, should be regulated by two different regulatory promoters, pTet and pLac relatively,  
+
fatty acids should be regulated by two different regulatory promoters, pTet and pLac relatively,  
-
to investigate if the activity of these promoters can be fine-tuned – if so, to estimate the optimal  
+
to investigate if the activity of these promoters can be fine-tuned – and if so, to estimate the optimal  
-
activity of both, for a maximum production of both the protein and the given fatty acids in the  
+
activity of both for a maximum production of both the protein and the given fatty acids in the  
same organism, Edible coli.
same organism, Edible coli.
</p>
</p>
Line 187: Line 193:
flavors are a possibility, but we chose a touch of lemon:<br><br>
flavors are a possibility, but we chose a touch of lemon:<br><br>
-
<span class="intro">Limonene synthase catalyzes synthesis</span> of the terpenoid (+)-limonene from the precursor geranyl  
+
<span class="intro">Limonene synthase catalyzes</span> synthesis of the terpenoid (+)-limonene from the precursor geranyl  
diphosphate, which is mainly responsible for the lemon taste in  
diphosphate, which is mainly responsible for the lemon taste in  
<span class="sourceReference"><i>Citrus Limon.</i></span>
<span class="sourceReference"><i>Citrus Limon.</i></span>
Line 207: Line 213:
Bioengineering, 2005. Vol. 91, p. 636-642.
Bioengineering, 2005. Vol. 91, p. 636-642.
<a href="http://onlinelibrary.wiley.com/doi/10.1002/bit.20539/pdf" target="_blank">(Link)</a></span>
<a href="http://onlinelibrary.wiley.com/doi/10.1002/bit.20539/pdf" target="_blank">(Link)</a></span>
-
LIMS1 encodes limonene synthase from <i>Citrus Limon</i>.<br>
+
LIMS1 encodes limonene synthase from <i>Citrus Limon</i>.<br><br>
</p>
</p>
<div class="popupImg alignCenter" style="width:400px">
<div class="popupImg alignCenter" style="width:400px">
   <img src="https://static.igem.org/mediawiki/2014/2/2f/2014SDUsystem5.png" style="width:400px" />
   <img src="https://static.igem.org/mediawiki/2014/2/2f/2014SDUsystem5.png" style="width:400px" />
-
Expression of dxs, LIMS1 and appY genes for generation of limonene.
+
Figure 10: Expression of dxs, LIMS1 and appY genes for generation of limonene.
</div><br>
</div><br>
<p>
<p>
-
<span class="intro">With the lemon flavor</span> incorporated, the system should be operated in a knock out strain of K12  
+
<span class="intro">With the lemon flavor incorporated,</span> the system should be operated in a knock out strain of K12  
MG1655: The odor-free YYC912 (<a href="http://parts.igem.org/Part:BBa_J45999)" target="_blank">BBa_J45999</a>).
MG1655: The odor-free YYC912 (<a href="http://parts.igem.org/Part:BBa_J45999)" target="_blank">BBa_J45999</a>).
</p><br>
</p><br>
Line 222: Line 228:
   <img src="https://static.igem.org/mediawiki/2014/c/c8/2014SDUsystem6.PNG" style="width:400px" />
   <img src="https://static.igem.org/mediawiki/2014/c/c8/2014SDUsystem6.PNG" style="width:400px" />
Original overview drawing of the Edible coli project.
Original overview drawing of the Edible coli project.
-
</a><br>
+
</a>
</span></li>
</span></li>
 +
<br><br>
</html>
</html>
{{:Team:SDU-Denmark/core/footer}}
{{:Team:SDU-Denmark/core/footer}}

Latest revision as of 03:04, 18 October 2014

System design

"You have to think anyway, so why not think big?" - Donald Trump

Original thought

The original design of the system making up the Edible coli contains the four elements listed below, in a K12 MG1655 strain of Escherichia coli:

  1. Excreting cellulases for the degradation of cellulose to glucose:
    Cellulose (C6H10O5)n consists of β-1,4 linked D-glucose units. For the Edible coli to gain nutrients from cellulose in the form of glucose units, the β-glucosidic bonds in-between must be broken by hydrolysis. For this degradation three enzymatic activities are needed by the enzymes, collectively known as cellulases: Endoglucanase, exoglucanase and β-glucosidase. Endoglucanase hydrolyses internal β-1,4 glucosidic bonds in the cellulose fiber, while exoglucanase hydrolyses the external bonds, releasing cellobiose disaccharides. The cellobiose disaccharides are then cleaved by β- glucosidase into two glucose molecules each. Source: Lynd, L.R., et al.: Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, 2002. Vol. 66:3, p. 506-577. (Link)

    Reaction and biobricks needed for the reaction to run (BioBricks produced by the Edinburgh iGEM team 2008):

    Figure 1: Endoglucanase: cenA (BBa_K118023), exoglucanase: cex (BBa_K118022), and β-glucosidase: bgIX (BBa_K118028).

  2. Producing a nutrional, self-designed protein – the OneProt:
    Among others, using the glucose from cellulose degradation as a nutrition source, the Edible coli will be able to produce a high quantity of essential amino acids, incorporated into a self-designed protein.

    One protein to rule them all!

    The OneProt design:

    Figure 2: The optimal rates of essential amino acids. Figure 3: The composition of essential amino acids. Figure 4: The composition of non-essential amino acids.

    The nutritional protein consists of the right amount of essential and non-essential amino acids including the right ratio of the essential amino acids, needed in the daily diet, as recommended by the WHO/ FAO/UNU Expert Consultation. Source: WHO/FAO/UNU Expert Consultation: Protein and Amino Acid Requirements in Human Nutrition. United Nations University, 2002. No. 935, p. 164. (Link) The optimal rates of essential amino acids are shown in figure 2.

    Figure 5: Predicted structure of the OneProt. The protein sequence encodes 480 amino acids in total. The amount of essential amino acids is based on the recommended ratio between essential and non-essential amino acids, which should be 27.7%. Source: WHO/FAO/UNU Expert Consultation: Protein and Amino Acid Requirements in Human Nutrition. United Nations University, 2002. No. 935, p. 150. (Link) The ratios of given essential amino acids are based on the recommendations in figure 2, and the ratios of given non-essential amino acids are based on how large an amount is used and processed in the body, and whether they can be formed from essential amino acids or not.

    In all, the protein comprises 136 essential (28.3%) and 344 non-essential (71.6%) amino acids, with the distributions shown in figure 3 and figure 4. To make sure the design would not contain any harmful protein structures or misfold, the sequence has been shuffled, codon optimized for E. coli, K12 MG1655, checked for restriction sites and its structure has been predicted, using Phyre2.

    The expression of this coding sequence (basic part: BBa_K1475001), and thus the synthesis of nutritional protein will be regulated by the repressible promoter, pTet (BBa_R0040):

    Figure 6: Expression of OneProt regulated by repressible Tet promoter.

    The activity of pTet regulated by the repressor protein, TetR (BBa_C0040), should be tested with and without LVA-tag by regulating the expression of GFP:

    Figure 7: Expression of GFP regulated by repressible Tet promoter: TetR(+LVA) vs. TetR(no LVA).

    GFP controlled by TetR(+LVA)-pTet (BBa_K1475006 )
    GFP controlled by TetR(no LVA)-pTet (BBa_K1475005)

  3. Synthesizing ω3- and ω6 fatty acids:
    Figure 8: Conventional biosynthetic pathway for the production of ω3- and ω6 fatty acids. Source: Ruiz-López, N., et al.: Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. Journal of Experimental Botany, 2011. Vol. 63:7, p. 2397-2410. Stearic acid (18:0) is part of the metabolism of E. coli. A Δ9 desaturase can convert stearic acid into oleic acid (18:1Δcis:9), a Δ12 desaturase can convert oleic acid into linoleic acid (18:2Δcis:9,12), which is an essential ω6 fatty acid, and a Δ15 desaturase can convert linoleic acid into α-linoleic acid (18:3Δcis:9,12,15), which is an essential ω3 fatty acid, ALA.

    A conventional biosynthetic pathway from linoleic and α-linoleic acid precursors to other ω3- and ω6 fatty acid products is shown in figure 1. Source: Ruiz-López, N., et al.: Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. Journal of Experimental Botany, 2011. Vol. 63:7, p. 2397-2410. (Link) ALA can be converted into both EPA and DHA in the human body, all important in cellular functions. Source: Nelson, D.L. and Cox, M.M.:Lehninger – Principles of Biochemistry, fifth edition. W.H. Freeman and Company, 2008. p. 345.

    Synechocystis sp. strain PCC6803, a cyanobacterium, has been shown to contain Δ9, Δ12 and Δ15 desaturases, which has been cloned into E. coli. Source: Sakamoto, T., et al.: Δ9 Acyl-Lipid Desaturases of Cyanobacteria. The Journal of Boilogical Chemistry, 1994. Vol. 269:14, p. 25576-25580. (Link)   Source: Wada, H., et al.: The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase. Journal of Bacteriology, 1993. Vol. 175:18, p. 6056-6058. (Link) These three biobricks are needed for the conversion of stearic acid into α-linoleic acid (Manchester, 2013) - The expression of these three enzymes will be regulated by the repressible promoter, pLac (BBa_R0010):

    Figure 9: Expression of Δ9 desaturase (BBa_K1027001), Δ12 desaturase (BBa_K1027002) and Δ15 desaturase, all regulated by the repressible Lac promoter.

    Δ12 desaturase is also found in Caenorhabditis elegans (BBa_K1475002).

    The expression of nutritional protein, OneProt, and desaturases for the biosynthesis of essential fatty acids should be regulated by two different regulatory promoters, pTet and pLac relatively, to investigate if the activity of these promoters can be fine-tuned – and if so, to estimate the optimal activity of both for a maximum production of both the protein and the given fatty acids in the same organism, Edible coli.


  4. Tasting good:
    For the Edible coli to be a bacterium considered in the context of food, it should taste good. Several flavors are a possibility, but we chose a touch of lemon:

    Limonene synthase catalyzes synthesis of the terpenoid (+)-limonene from the precursor geranyl diphosphate, which is mainly responsible for the lemon taste in Citrus Limon. Source: Lükcker, J., et al.: Monoterpene biosynthesis in lemon (Citrus Limon). European Journal of Biochemistry, 2002. Vol. 269:13, p. 3160-3171. (Link) The biobrick, dsx+LIMS1+appY (BBa_K118024) (Edinburgh, 2008), generates 1-deoxyxylulose-5-phosphate synthase, encoded by dsx, which catalyzes the first step in the biosynthesis of terpenoids, and a transcriptional regulator related to anaerobic energy metabolism, encoded by appY. Overexpression of dxs and appY has been reported to increase yields of terpenoids. Source: Kang, M.J. et al.: Identification of Genes Affecting Lycopene Accumulation in Escherichia coli Using a Shot-Gun Method. Biotechnology and Bioengineering, 2005. Vol. 91, p. 636-642. (Link) LIMS1 encodes limonene synthase from Citrus Limon.

    Figure 10: Expression of dxs, LIMS1 and appY genes for generation of limonene.

    With the lemon flavor incorporated, the system should be operated in a knock out strain of K12 MG1655: The odor-free YYC912 (BBa_J45999).


    Original overview drawing of the Edible coli project.