Team:Exeter/EColiStressTesting
From 2014.igem.org
-
The Toxicity of TNT and Nitroglycerin to E. coli.
Aim
Trinitrotoluene and nitroglycerin are known to have toxic properties. In order to asses the efficacy of our constructs to either degrade these compounds or detect them we need to know their effect on E. coli. This page describes our findings with regards to the effects of TNT and NG on TOP10 E. coli cells.
We found out the concentrations of each chemical that inhibited growth in E. coli. These concentrations were between 0.326 mM and 0.364 mM for TNT, with complete inhibition occurring above 0.400 mM, and between 0.086 mM and 0.169 mM for NG, with complete inhibition occurring above 0.169 mM. A secondary result of these tests shows that 96-well plates can be used to efficiently grow E. coli.
Introduction
Trinitrotoluene and nitroglycerin are known to be toxic to a wide range of organisms, including bacteria. Before commencing any work with engineered E. coli, we first had to know out how the E. coli strain we are using (TOP10) would respond to the addition of TNT or NG to the media.
To test this we monitored growth of E. coli following addition of a known concentration of TNT or NG. These experiments were performed in a 96-well plate, allowing us to increase the range of concentrations of compounds we were able to test. Moreover, TNT and NG are only available in small quantities, and the smaller culture volumes allowed this to go further.
The following questions were asked:
- What concentration of TNT or NG prevents growth of E. coli in a new cell culture?
- What concentration of TNT or NG is lethal to an established cell culture?
Experiment One: What approximate level of TNT prevents growth of E. coli in a new cell culture?
This test was carried out on plate 1. E. coli was grown for 48 hours with the addition of a certain volume of TNT (0-40ul, with steps of 2.5-10ul) at t = 0. Over this time its optical density was measured, as it is (until a point) proportional to the sample’s growth. We carried out this test to gain an approximate knowledge of what level of TNT would supress E. coli growth.
Experiment Two: Does a lethal dose of TNT remain lethal as a cell culture grows?
This test was carried out on plate 2. E. coli was grown for 48 hours with the addition of a concentration of TNT found to be lethal in Experiment 1 (20 ul) added every hour for 3 hours. Over this time its optical density was measured. We carried out this test to find out if a lethal concentration of TNT remained lethal as the size of the cell sample grew.
Experiment Three: What level of NG prevents growth of E. coli in a new cell culture?
This test was carried out on plate 2. E. coli was grown for 48 hours with the addition of a certain volume of NG (0-20ul, with steps of 2-4ul) at t = 0. Over this time its optical density was measured. We carried out this test to gain an approximate knowledge of what level of NG would completely supress E. coli growth.
Experiment Four: What precise level of TNT prevents growth of E. coli in a new cell culture?
This test was carried out on plate 1. E. coli was grown for 48 hours with the addition of a certain volume of TNT (0-20ul with steps of 1ul between 10-20ul) at t = 0. Over this time its optical density was measured. We did this experiment to obtain a more accurate view of how TNT effects cells when it is added to the initial cell culture. The concentrations used were based on the information gained from experiment one.
Materials
- TECAM 200 PRO microplate reader.
- Grenier 96 well black plates.
- Top10 E. coli
- 1000 ug ml-1 Trinitrotoluene, or 4.4uM.
- 1000 ug ml-1¬ Nitroglycerin, or 4.4uM.
- LB Media
- MYE Media
Method
These experiments were carried out on 96 well plates, using a TECAM 200 PRO microplate reader. The Top10 strains were grown on LB media overnight and scanned while on MYE media. Each strain was grown overnight in 10 ml of LB media in a shaking incubator at 37 oC.
To create the culture for each well, 200ul of MYE media was mixed with 3 ul of the required strain, as well as a volume of TNT or NG specific to each well. When MYE of LB media was used as a control 200 ul was used. The wells were scanned in the TECAM machine, a process which took around 5 minutes. The cultures were kept at 37oC while this occurred. The plates were then transferred to a shaking incubator (800 rpm), usually for 55 minutes.
In cases where plates where run overnight they were left in the TECAM machine and the shaking function was used. Each plate had a different arrangement of cell cultures. The layout of the plate and location of the cultures used in each experiment is listed below.
Plate 1:
- E1-3 Top10, with 5 ul TNT
- F1-3 Top10, with 10 ul TNT
- G1-3 Top10, with 20 ul TNT
- H1-3 Top10, with 30 ul TNT
- F10-12 Top10, with 0 ul TNT
- G10-12 LB Media.
Plate 2:
- A1-3 Top10, with 0 ul
- B1-3 Top10, with 20 ul TNT added at T=0
- C1-3 Top10, with 20 ul TNT added at T=1
- D1-3 Top10, with 20 ul TNT added at T=2
- E1-3 Top10, with 20 ul TNT added at T=3
- F1-3 Top10, with 20 ul TNT added at T=4
- A7-8 Top10, with 0 ul NG
- B7-8 Top10, with 2 ul NG
- C7-8 Top10, with 4 ul NG
- D7-8 Top10, with 8 ul NG
- E7-8 Top10, with 12 ul NG
- F7-8 Top10, with 16 ul NG
- G7-8 Top10, with 20 ul NG
- F10-12 Top10, with 0 ul
- G10-12 LB Media
- H10-12 MYE Media
Plate 3:
- A1-3 Top10, with 20 ul TNT
- B1-3 Top10, with 19 ul TNT
- C1-3 Top10, with 18 ul TNT
- D1-3 Top10, with 17 ul TNT
- E1-3 Top10, with 16 ul TNT
- F1-3 Top10, with 15 ul TNT
- G1-3 Top10, with 14 ul TNT
- H1-3 Top10, with 13 ul TNT
- A4-6 Top10, with 12 ul TNT
- B4-6 Top10, with 11 ul TNT
- C4-6 Top10, with 10 ul TNT
- D4-6 Top10, with 5 ul TNT
- E4-6 Top10, with 2 ul TNT
- F4-6 Top10, with 0 ul TNT
- G4-6 LB Media
- H4-6 MYE Media
Results
Experiment One: What approximate level of TNT prevents growth of E. coli in a new cell culture?
Experiment Two: Does a lethal dose of TNT remain lethal as a cell culture grows?
Experiment Three: What level of NG prevents growth of E. coli in a new cell culture?
Experiment Four: What precise level of TNT prevents growth of E. coli in a new cell culture?
Discussion
Experiment One: What approximate level of TNT prevents growth of E. coli in a new cell culture?
From this experiment we obtained two approximate values that were used in future experimental design. 20 ul TNT in 200 ul was enough to almost completely inhibit growth, while 10 ul challenged the bacteria and slowed growth, but ultimately resulted in growth close to that of the uninhibited culture.
Experiment Two: Does a lethal dose of TNT remain lethal as a cell culture grows?
20ul of TNT was established in Experiment One to be a lethal dose, so this experiment used that value. The addition of TNT before the OD reached 0.2500 lead to a reduction of growth, causing it to reach a similar value to that of the culture that had TNT added initially. However, when the OD was greater than 0.2700 the culture managed to recover from the addition of the chemical. This shows that the level of TNT required to prevent the growth of bacteria increases as the number of bacteria present increases.
Experiment Three: What level of NG prevents growth of E. coli in a new cell culture?
In this experiment we found that E. coli growth was completely inhibited by the presence of 8 ul or greater of NG, while volumes of 4ul or below allow close-to-normal growth to occur. This corresponds to concentration for toxicity 0.169 mM, while survival occurs in concentrations of 0.086 mM or below.
Experiment Four: What precise level of TNT prevents growth of E. coli in a new cell culture?
In this experiment we found that E. coli growth was completely inhibited by the presence of 8 ul or greater of NG, while volumes of 4ul or below allow close-to-normal growth to occur. This corresponds to concentration for toxicity 0.169 mM, while survival occurs in concentrations of 0.086 mM or below.
Summary
We can see that E. coli is clearly effected by the levels of TNT and NG it is exposed to. We have found a fairly well defined line in which cell cultures transition from being able to grow, albeit slowly, to having their growth completely inhibited. With this information we can test if our constructs increase the survival rate of E. coli, or find an appropriate level of pollutant with which to trigger our promoters.
Navigation
Exeter | ERASE