Team:Exeter/EColiStressTesting
From 2014.igem.org
B.L.Miller (Talk | contribs) |
B.L.Miller (Talk | contribs) |
||
Line 90: | Line 90: | ||
<p><h2>Results</h2></p> | <p><h2>Results</h2></p> | ||
<b>Experiment One</b>: What approximate level of TNT prevents growth of E. coli in a new cell culture? | <b>Experiment One</b>: What approximate level of TNT prevents growth of E. coli in a new cell culture? | ||
- | |||
- | |||
- | + | <figure> | |
- | Figure 2 compares the growth of natural E. coli in MYE media as the concentration of TNT within the culture increases. It’s clear that as the concentration of TNT increases the rate of growth decreases. It also shows that above 10 l the growth of E.coli is severely limited. At 24 hours the cultures have an optical density around 10% that of uninhibited E. coli, while at and below 10 ul growth is 80-90% of the control culture. | + | <img src="https://static.igem.org/mediawiki/2014/e/e3/Optical_Density_of_E._coli_cultures_in_response_to_increasing_concentration_of_TNT.png" alt="Optical Density of E. coli cultures in response to increasing concentration of TNT" width="800" height="520"> |
+ | <figcaption>Figure 1 shows how natural E. coli responded to varying concentrations of TNT. Between 0-7 hours the rate of growth was slower as the volume of TNT added to the culture increased. After 24 hours a clear gap can be seen between 10 and 20 microlitres of TNT, with those at 10 or below all showing an optical density between 0.3400 and 0.4200, while those at 20 or above all showed an optical density between 0.1200 and 0.0800.</figcaption> | ||
+ | </figure> | ||
+ | |||
+ | <figure> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/4/4e/%25Growth_compared_to_0ul_TNT.png" alt="Percentage growth compared to 0ul TNT" width="800" height="450"> | ||
+ | <figcaption>Figure 2 compares the growth of natural E. coli in MYE media as the concentration of TNT within the culture increases. It’s clear that as the concentration of TNT increases the rate of growth decreases. It also shows that above 10 l the growth of E.coli is severely limited. At 24 hours the cultures have an optical density around 10% that of uninhibited E. coli, while at and below 10 ul growth is 80-90% of the control culture.</figcaption> | ||
+ | </figure> | ||
+ | |||
<p> </p> | <p> </p> | ||
<b>Experiment Two</b>: Does a lethal dose of TNT remain lethal as a cell culture grows? | <b>Experiment Two</b>: Does a lethal dose of TNT remain lethal as a cell culture grows? |
Revision as of 15:06, 14 October 2014
-
The Toxicity of TNT and Nitroglycerin to E. coli.
Trinitrotoluene and nitroglycerin are both toxic compounds that will kill out lab strain of E. coli at a certain concentration. We needed to know this level in order to find out how our degradation constructs effect the survival rate of our bacteria. We observed the rate of growth of our bacteria when various concentrations of each chemical were present. We did this by observing the growth of cultures in 200ul wells on 96-well plates. We found out the concentrations of each chemical that inhibited growth in unmodified E. coli. These concentrations were between 0.326 mM and 0.364 mM for TNT, with complete inhibition occurring above 0.400 mM, and between 0.086 mM and 0.169 mM for NG, with complete inhibition occurring above 0.169 mM. A secondary result of these tests shows that 96-well plates can be used to efficiently grow E. coli.Introduction
Trinitrotoluene and nitroglycerin, the compounds our parts are primarily designed to degrade, are known to be toxic to a wide range of organisms, including bacteria, and in order to discover how our parts were affecting the degradation of TNT/NG we first had to find out how our basic E. coli strain would naturally respond. Once we have this information we can find out if our parts improve the survival and growth of E. coli in further experiments.
We tested the bacteria’s tolerance for TNT/NG by observing whether growth occurred in a fresh culture after a set volume of the chemical had been added. A set volume of overnight culture was added to MYE media in a 96 well plate, as well as a volume of TNT/NG. By using a 96-well plate we were able to massively increase the range of concentrations of compounds we were able to test.
We ran a series of increasingly focused experiments to understand E. coli’s response to these chemicals. Our research was constrained by the limited amounts of TNT and NG we had access to.
Experiment One: What approximate level of TNT prevents growth of E. coli in a new cell culture?
This test was carried out on plate 1. E. coli was grown for 48 hours with the addition of a certain volume of TNT (0-40ul, with steps of 2.5-10ul) at t = 0. Over this time its optical density was measured, as it is (until a point) proportional to the sample’s growth. We carried out this test to gain an approximate knowledge of what level of TNT would supress E. coli growth.
Experiment Two: Does a lethal dose of TNT remain lethal as a cell culture grows?
This test was carried out on plate 2. E. coli was grown for 48 hours with the addition of a concentration of TNT found to be lethal in Experiment 1 (20 ul) added every hour for 3 hours. Over this time its optical density was measured. We carried out this test to find out if a lethal concentration of TNT remained lethal as the size of the cell sample grew.
Experiment Three: What level of NG prevents growth of E. coli in a new cell culture?
This test was carried out on plate 2. E. coli was grown for 48 hours with the addition of a certain volume of NG (0-20ul, with steps of 2-4ul) at t = 0. Over this time its optical density was measured. We carried out this test to gain an approximate knowledge of what level of NG would completely supress E. coli growth.
Experiment Four: What precise level of TNT prevents growth of E. coli in a new cell culture?
This test was carried out on plate 1. E. coli was grown for 48 hours with the addition of a certain volume of TNT (0-20ul with steps of 1ul between 10-20ul) at t = 0. Over this time its optical density was measured. We did this experiment to obtain a more accurate view of how TNT effects cells when it is added to the initial cell culture. The concentrations used were based on the information gained from experiment one.
Materials
TECAM 200 PRO microplate reader.
Grenier 96 well black plates.
Top10 E. coli
1000 ug ml-1 Trinitrotoluene, or 4.4uM.
1000 ug ml-1¬ Nitroglycerin, or 4.4uM.
LB Media
MYE Media
Method
These experiments were carried out on 96 well plates, using a TECAM 200 PRO microplate reader. The Top10 strains were grown on LB media overnight and scanned while on MYE media. Each strain was grown overnight in 10 ml of LB media in a shaking incubator at 37 oC.
To create the culture for each well, 200ul of MYE media was mixed with 3 ul of the required strain, as well as a volume of TNT or NG specific to each well. When MYE of LB media was used as a control 200 ul was used. The wells were scanned in the TECAM machine, a process which took around 5 minutes. The cultures were kept at 37oC while this occurred. The plates were then transferred to a shaking incubator (800 rpm), usually for 55 minutes.
In cases where plates where run overnight they were left in the TECAM machine and the shaking function was used. Each plate had a different arrangement of cell cultures. The layout of the plate and location of the cultures used in each experiment is listed below.
Plate 1:
E1-3 Top10, with 5 ul TNT
F1-3 Top10, with 10 ul TNT
G1-3 Top10, with 20 ul TNT
H1-3 Top10, with 30 ul TNT
F10-12 Top10, with 0 ul TNT
G10-12 LB Media.
Plate 2:
A1-3 Top10, with 0 ul
B1-3 Top10, with 20 ul TNT added at T=0
C1-3 Top10, with 20 ul TNT added at T=1
D1-3 Top10, with 20 ul TNT added at T=2
E1-3 Top10, with 20 ul TNT added at T=3
F1-3 Top10, with 20 ul TNT added at T=4
A7-8 Top10, with 0 ul NG
B7-8 Top10, with 2 ul NG
C7-8 Top10, with 4 ul NG
D7-8 Top10, with 8 ul NG
E7-8 Top10, with 12 ul NG
F7-8 Top10, with 16 ul NG
G7-8 Top10, with 20 ul NG
F10-12 Top10, with 0 ul
G10-12 LB Media
H10-12 MYE Media
Plate 3:
A1-3 Top10, with 20 ul TNT
B1-3 Top10, with 19 ul TNT
C1-3 Top10, with 18 ul TNT
D1-3 Top10, with 17 ul TNT
E1-3 Top10, with 16 ul TNT
F1-3 Top10, with 15 ul TNT
G1-3 Top10, with 14 ul TNT
H1-3 Top10, with 13 ul TNT
A4-6 Top10, with 12 ul TNT
B4-6 Top10, with 11 ul TNT
C4-6 Top10, with 10 ul TNT
D4-6 Top10, with 5 ul TNT
E4-6 Top10, with 2 ul TNT
F4-6 Top10, with 0 ul TNT
G4-6 LB Media
H4-6 MYE Media
Results
Experiment One: What approximate level of TNT prevents growth of E. coli in a new cell culture?Discussion
Experiment One: What approximate level of TNT prevents growth of E. coli in a new cell culture? From this experiment we obtained two approximate values that were used in future experimental design. 20 ul TNT in 200 ul was enough to almost completely inhibit growth, while 10 ul challenged the bacteria and slowed growth, but ultimately resulted in growth close to that of the uninhibited culture.Conclusion
We can see that E. coli is clearly effected by the levels of TNT and NG it is exposed to. We have found a fairly well defined line in which cell cultures transition from being able to grow, albeit slowly, to having their growth completely inhibited. With this information we can test if our constructs increase the survival rate of E. coli, or find an appropriate level of pollutant with which to trigger our promoters.Exeter | ERASE