Team:Colombia/Scripting
From 2014.igem.org
(Difference between revisions)
(4 intermediate revisions not shown) | |||
Line 2: | Line 2: | ||
<html> | <html> | ||
<div class="span11" style="text-align: justify;"> | <div class="span11" style="text-align: justify;"> | ||
- | + | <br> | |
<p> | <p> | ||
- | |||
<br> | <br> | ||
<center><b> <font size="24"> | <center><b> <font size="24"> | ||
- | + | <br> | |
Scripting | Scripting | ||
</font><br> | </font><br> | ||
Line 595: | Line 594: | ||
<b><font color="#8A0808" size="3" >Stochastic Model</font></b> | <b><font color="#8A0808" size="3" >Stochastic Model</font></b> | ||
<br> | <br> | ||
- | Sometimes probabilistic models better describe certain systems<br> | + | Sometimes probabilistic models better describe certain systems, This required a fairly big amount of computational power<br> |
<textarea readonly rows = "20"> | <textarea readonly rows = "20"> | ||
%Stochastic Simulation for the system | %Stochastic Simulation for the system | ||
Line 1,328: | Line 1,327: | ||
% | % | ||
% | % | ||
- | |||
</textarea> | </textarea> | ||
</p> | </p> | ||
</div> | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | |||
+ | |||
+ | <center> | ||
+ | <div class="button-fill orange" ><div class="button-text"> Back to modeling</div><div class="button-inside"><div class="inside-text"><a style="text-decoration: none; background-color: none; color: red;" href="https://2014.igem.org/Team:Colombia/Modeling">Go! </a></div></div></div> | ||
+ | </center> | ||
+ | <script> | ||
+ | $(".button-fill").hover(function () { | ||
+ | $(this).children(".button-inside").addClass('full'); | ||
+ | }, function() { | ||
+ | $(this).children(".button-inside").removeClass('full'); | ||
+ | }); | ||
+ | //@ sourceURL=pen.js | ||
+ | </script> | ||
+ | |||
</html> | </html> |
Latest revision as of 03:10, 18 October 2014
Scripting
Feel free to expand and scroll through the text boxes in order to further examine the code.
Deterministic Model
This code creates the differential equations governing the concentration dinamics of each protein in our model, finds the steady state solutions and then solves them using the numerical aproximation method Runge-Kutta
Metropolis-Hastings Algorithm
This code determines which set of values for missing parameters yield the most desirable response.
Sensitivity Analysis
This code points out which are the critical parameters in the system (those that change the response drastically).
Stochastic Model
Sometimes probabilistic models better describe certain systems, This required a fairly big amount of computational power