Team:Colombia/Scripting

From 2014.igem.org

(Difference between revisions)
Line 201: Line 201:
%  
%  
%--------------------------------------------%
%--------------------------------------------%
-
%                 PARAMETERS                 %
+
%                             PARAMETERS                             %
%--------------------------------------------%
%--------------------------------------------%
%
%
Line 247: Line 247:
%
%
%--------------------------------------------%
%--------------------------------------------%
-
%     Runge Kutta 4 order aproximation     %
+
%               Runge Kutta 4 order aproximation           %
%--------------------------------------------%
%--------------------------------------------%
%
%
Line 441: Line 441:
function y=input_Metropolis(t)
function y=input_Metropolis(t)
%--------------------------------------------%
%--------------------------------------------%
-
%         CAI-1 (C) pulse simulation         %
+
%                   CAI-1 (C) pulse simulation                   %
%--------------------------------------------%
%--------------------------------------------%
if t>100 && t<200   
if t>100 && t<200   
Line 460: Line 460:
%  
%  
%--------------------------------------------%
%--------------------------------------------%
-
%                 PARAMETERS                 %
+
%                               PARAMETERS                           %
%--------------------------------------------%
%--------------------------------------------%
%
%
Line 511: Line 511:
%
%
%--------------------------------------------%
%--------------------------------------------%
-
%     Runge Kutta 4 order aproximation     %
+
%               Runge Kutta 4 order aproximation             %
%--------------------------------------------%
%--------------------------------------------%
%
%

Revision as of 04:10, 16 October 2014

Wheeltz - CSS3 Navigational Wheel Menu

  • Home
  • iGEM
  • Facebook
  • Twitter






Scripting

Feel free to expand and scroll through the text boxes in order to further examine the code.


Deterministic Model
This code creates the differential equations governing the concentration dinamics of each protein in our model, finds the steady state solutions and then solves them using the numerical aproximation method Runge-Kutta


Metropolis-Hastings Algorithm
This code determines which set of values for missing parameters yield the most desirable response.


Sensitivity Analysis
This code points out which are the critical parameters in the system (those that change the response drastically).


Stochastic Model
Sometimes probabilistic models better describe certain systems