Team:Colombia/Scripting

From 2014.igem.org

(Difference between revisions)
Line 18: Line 18:
This code creates the differential equations governing the concentration dinamics of each protein in our model, finds the steady state solutions and then solves them using the numerical aproximation method Runge-Kutta
This code creates the differential equations governing the concentration dinamics of each protein in our model, finds the steady state solutions and then solves them using the numerical aproximation method Runge-Kutta
<textarea>
<textarea>
-
function y=CondIni(x)
+
function y=det()
 +
%
 +
%--------------------------------------------%
 +
%                Runge Kutta 4 order aproximation          %
 +
%--------------------------------------------%
 +
%
 +
h=1200;                                                            % Maximum time
 +
m=0.005;                                                          % Step lenght [s]
 +
xi=[1,1,1,1,1,1,1,1,1];                                        %
 +
y=fsolve(@CondIni,xi);                                        %
 +
conInd=[1,1,1,1,1,1,1,1,0];                                %
 +
l=(0:m:h)';                                                          % Time vector
 +
%
 +
x=zeros(length(l),length(conInd));                        % Variable's Matrix, the variables in each column and time in each row
 +
C=zeros(1,length(l));                                            % zero vector to be filled
 +
x(1,:)=conInd;                                                      %
 +
%
 +
for k=1:length(l)-1
 +
    xk=x(k,:);                                                        % Capture of the last value in the matrix, the actual variable values
 +
    k1=difeq(l(k),xk);                                            % First slope of the RK4 method
 +
    k2=difeq(l(k)+m/2,xk+(m/2*k1)');                  % Second slope of the RK4 method
 +
    k3=difeq(l(k)+m/2,xk+(m/2*k2)');                  % Third slope of the RK4 method
 +
    k4=difeq(l(k)+m,xk+(m*k3)');                          % Fourth slope of the RK4 method
 +
    xk1=xk+m/6*(k1+2*k2+2*k3+k4)';                % New value calculation for the variables
 +
    %xk1=xk+m*difeq(l(k),xk)';                              % Another aproximation, Newton's method (comment line)                   
 +
    xk2=zeros(1,length(xk1));                                %
 +
%   
 +
    for p=1:length(xk1)
 +
        if(xk1(p)<0.00000001)
 +
            xk2(p)=0;
 +
        else   
 +
            xk2(p)=xk1(p);
 +
        end 
 +
    end
 +
    x(k+1,:)=xk2;                                                    % Variable vector actualization in the matrix
 +
end
 +
%
 +
for j=1:length(l)
 +
    if (l(j)>(300) & l(j)<(1000))
 +
        C(j)=2.25;
 +
    else
 +
        C(j)=0;
 +
    end
 +
end
 +
%
 +
 
 +
CS=x(:,1);                                                              %
 +
CSa=x(:,2);                                                            %
 +
Uf=x(:,3);                                                              %
 +
U=x(:,4);                                                              %
 +
Of=x(:,5);                                                              %
 +
O=x(:,6);                                                              %
 +
TR=x(:,7);                                                              %
 +
TA=x(:,8);                                                              %
 +
R=x(:,9);                                                                %
 +
%
 +
%
 +
figure(1)
 +
%
 +
hold on;
 +
plot(l,R,'r')
 +
plot(l,C)
 +
plot(l,Of,'g')
 +
%plot(l,TR)
 +
hold off;
 +
xlabel('Time')
 +
ylabel('Concetration (micromolar)')
 +
title('Activator response')
 +
%
 +
end
 +
%
 +
%
 +
function y=difeq(t,x)
%
%
global kcc kcd dsu duo fsu fuo gcs gcsa guf gu gof go gtr gta gr acs au ao ar atr ata btr bta br ho htr n
global kcc kcd dsu duo fsu fuo gcs gcsa guf gu gof go gtr gta gr acs au ao ar atr ata btr bta br ho htr n
Line 26: Line 98:
%--------------------------------------------%
%--------------------------------------------%
%
%
-
  C=0;                                           % Extracellular concentration of the cholerae autoinducer-1 (CAI-1)
+
  C=input(t);                                   % Extracellular concentration of the cholerae autoinducer-1 (CAI-1)
%
%
  CS=x(1);                                      % Concentration of the membrane bound CqsS protein (CAI-1 unbound=Inactive)
  CS=x(1);                                      % Concentration of the membrane bound CqsS protein (CAI-1 unbound=Inactive)
-
  CSa=x(2);                                     % Concentration of the membrane bound CqsS protein (CAI-1 bound=Active)
+
  CSa=x(2);                                     % Concentration of the membrane bound CqsS protein (CAI-1 bound=Active)
  Uf= x(3);                                      % Phosphorelay protein LuxU (phosphorylated) Concentration
  Uf= x(3);                                      % Phosphorelay protein LuxU (phosphorylated) Concentration
  U=x(4);                                        % Phosphorelay protein LuxU (unphosphorylated) Concentration
  U=x(4);                                        % Phosphorelay protein LuxU (unphosphorylated) Concentration
Line 36: Line 108:
  TR=x(7);                                      % Ptet Repressor protein concentration
  TR=x(7);                                      % Ptet Repressor protein concentration
  TA=x(8);                                      % Ptet Activator protein concentration
  TA=x(8);                                      % Ptet Activator protein concentration
-
  R=x(9);                                       % Response molecule concentration
+
  R=x(9);                                         % Response molecule concentration
%  
%  
%--------------------------------------------%
%--------------------------------------------%
-
%                               PARAMETERS                           %
+
%                               PARAMETERS                             %
%--------------------------------------------%
%--------------------------------------------%
%
%
Line 45: Line 117:
kcd=1;                                          % CAI1 and CqsS decoupling Rate
kcd=1;                                          % CAI1 and CqsS decoupling Rate
dsu=4;                                          % LuxU* dephosphorylation rate through CqsS*
dsu=4;                                          % LuxU* dephosphorylation rate through CqsS*
-
duo=4;                                         % LuxO* dephosphorylation rate through LuxU
+
duo=4;                                         % LuxO* dephosphorylation rate through LuxU
fsu=2;                                          % LuxU* phosphorylation rate through CqsS
fsu=2;                                          % LuxU* phosphorylation rate through CqsS
fuo=2;                                          % LuxO* phosphorylation rate through LuxU*
fuo=2;                                          % LuxO* phosphorylation rate through LuxU*
%
%
gcs=1;                                          % CqsS protein decay rate
gcs=1;                                          % CqsS protein decay rate
-
gcsa=1;                                         % CqsS* protein decay rate
+
gcsa=1;                                       % CqsS* protein decay rate
guf=1;                                          % LuxU* protein decay rate
guf=1;                                          % LuxU* protein decay rate
gu=1;                                          % LuxU protein decay rate
gu=1;                                          % LuxU protein decay rate
Line 62: Line 134:
au=3;                                          % LuxU basal production rate
au=3;                                          % LuxU basal production rate
ao=3;                                          % LuxO basal production rate
ao=3;                                          % LuxO basal production rate
-
ar=0.01;                                       % response molecule basal production rate
+
ar=0.01;                                       % response molecule basal production rate
-
atr=0.01;                                       % TR basal production rate
+
atr=0.01;                                     % TR basal production rate
-
ata=0.01;                                       % TA basal production rate
+
ata=0.01;                                     % TA basal production rate
-
%
+
 
btr=5;                                          % Maximum rate of TR expression
btr=5;                                          % Maximum rate of TR expression
bta=5;                                          % Maximum rate of TA expression
bta=5;                                          % Maximum rate of TA expression
br=5;                                          % Maximum rate of response molecule expression
br=5;                                          % Maximum rate of response molecule expression
-
ho=1.5;                                         % LuxO*- DNA coupling rate
+
ho=1.5;                                       % LuxO*- DNA coupling rate
htr=2;                                          % TRdomain-DNA coupling rate
htr=2;                                          % TRdomain-DNA coupling rate
%
%
Line 78: Line 150:
%--------------------------------------------%
%--------------------------------------------%
%
%
-
dCS = acs + kcd*CSa - C*CS*kcc - gcs*CS;                               % Differential equation governing the change in the concentration of the membrane bound CqsS protein (CAI-1 unbound=Inactive)through time
+
dCS = acs + kcd*CSa - C*CS*kcc - gcs*CS;                                     % Differential equation governing the change in the concentration of the membrane bound CqsS protein (CAI-1 unbound=Inactive)through time
-
dCSa = -kcd*CSa + C*CS*kcc - gcsa*CSa;                                 % Differential equation governing the change in the concentration of the membrane bound CqsS protein (CAI-1 bound=Active) through time
+
dCSa = -kcd*CSa + C*CS*kcc - gcsa*CSa;                                       % Differential equation governing the change in the concentration of the membrane bound CqsS protein (CAI-1 bound=Active) through time
-
dUf = U*Of*duo-Uf*O*fuo-CSa*Uf*dsu + CS*U*fsu - guf*Uf;     % Differential equation governing the change in the phosphorelay protein LuxU (phosphorylated) Concentration through time
+
dUf = U*Of*duo-Uf*O*fuo-CSa*Uf*dsu + CS*U*fsu - guf*Uf;           % Differential equation governing the change in the phosphorelay protein LuxU (phosphorylated) Concentration through time
-
dU = au-U*Of*duo+Uf*O*fuo - CS*U*fsu + CSa*Uf*dsu -gu*U; % Differential equation governing the change in the phosphorelay protein LuxU (unphosphorylated) Concentration through time
+
dU = au-U*Of*duo+Uf*O*fuo - CS*U*fsu + CSa*Uf*dsu -gu*U;       % Differential equation governing the change in the phosphorelay protein LuxU (unphosphorylated) Concentration through time
-
dOf = Uf*O*fuo - U*Of*duo - gof*Of;                             % Differential equation governing the change in the phosphorelay protein LuxO (phosphorylated) Concentration through time
+
dOf = Uf*O*fuo - U*Of*duo - gof*Of;                     % Differential equation governing the change in the phosphorelay protein LuxO (phosphorylated) Concentration through time
-
dO = ao - Uf*O*fuo + U*Of*duo - go*O;                             % Differential equation governing the change in the phosphorelay protein LuxO (unphosphorylated) Concentration through time
+
dO = ao - Uf*O*fuo + U*Of*duo - go*O;                           % Differential equation governing the change in the phosphorelay protein LuxO (unphosphorylated) Concentration through time
-
dTR = atr + (btr*Of^n)/(ho^n+Of^n) - gtr*TR;                           % Differential equation governing the change in the ptet Repressor protein concentration through time
+
dTR = atr + (btr*Of^n)/(ho^n+Of^n) - gtr*TR;   % Differential equation governing the change in the ptet Repressor protein concentration through time
-
dTA = ata + bta/((1+TR/TA)+(htr/TA)) - gta*TA;                       % Differential equation governing the change in the ptet Activator protein concentration through time
+
dTA = ata + bta/((1+TR/TA)+(htr/TA)) - gta*TA; % Differential equation governing the change in the ptet Activator protein concentration through time
-
dR = ar + br/((1+TR/TA)+(htr/TA)) - gr*R;                               % Differential equation governing the change in the response molecule concentration through time
+
dR = ar + br/((1+TR/TA)+(htr/TA)) - gr*R;       % Differential equation governing the change in the response molecule concentration through time
%
%
y(1)=dCS;                                      %
y(1)=dCS;                                      %
-
y(2)=dCSa;                                     %
+
y(2)=dCSa;                                     %
y(3)=dUf;                                      %
y(3)=dUf;                                      %
y(4)=dU;                                        %
y(4)=dU;                                        %
Line 96: Line 168:
y(7)=dTR;                                      %
y(7)=dTR;                                      %
y(8)=dTA;                                      %
y(8)=dTA;                                      %
-
y(9)=dR;                                       %
+
y(9)=dR;                                         %
%
%
-
y=y';                                           % Transposing the vector because of matlab language restrictions
+
y=y';                                             % Transposing the vector because of matlab language restrictions
%
%
end
end
-
%";
+
%
 +
%
 +
function y=input(t)
 +
%--------------------------------------------%
 +
%                      CAI-1 (C) pulse simulation                %
 +
%--------------------------------------------%
 +
if t>50 && t<100 
 +
  y=10;
 +
elseif t>250 && t<1500
 +
    y=20;
 +
else
 +
    y=0;
 +
end
 +
%
 +
%
 +
 
</textarea>
</textarea>
</p>
</p>
</div>
</div>
</html>
</html>

Revision as of 02:07, 16 October 2014

Wheeltz - CSS3 Navigational Wheel Menu

  • Home
  • iGEM
  • Facebook
  • Twitter






Scripting

Feel free to expand and scroll through the text boxes in order to further examine the code.


DETERMINISTIC MODEL
This code creates the differential equations governing the concentration dinamics of each protein in our model, finds the steady state solutions and then solves them using the numerical aproximation method Runge-Kutta