Team:Paris Saclay/Modeling

From 2014.igem.org

(Difference between revisions)
(Modeling)
(Modeling)
Line 9: Line 9:
     <style>
     <style>
-
           table
+
           td
-
          {
+
-
                  border-collapse: collapse;
+
-
                  width: 90%;
+
-
                  margin: auto;
+
-
                  border: 0.5px solid black;
+
-
                  text-align: justify;
+
-
                  padding: 12px;
+
-
                  margin-bottom: 20px;
+
-
          }
+
-
 
+
-
          tr
+
           {
           {
             border: 0.5px solid black;
             border: 0.5px solid black;
           }
           }
-
 
-
 
-
article
 
-
{
 
-
    width: 80%;
 
-
    margin: auto;
 
-
    border: 1px solid black;
 
-
    text-align: justify;
 
-
    padding: 12px;
 
-
    margin-bottom: 20px;
 
-
background-color: white;
 
-
border-radius: 10px;
 
-
box-shadow: 8px 8px 12px #1c1a19;
 
-
}
 
     </style>
     </style>
Line 43: Line 18:
<body>
<body>
-
<article>
 
To realise our artwork, we use an agarose gel to obtain the shape of a lemon. To push the resemblance to the extreme, we wish to have a crust in the edge of the lemon when we seperate it. In fact, we build bacteria who produce yellow/green color in presence of oxygen. Thus we must evaluate the penetration of the oxygen in the gel !
To realise our artwork, we use an agarose gel to obtain the shape of a lemon. To push the resemblance to the extreme, we wish to have a crust in the edge of the lemon when we seperate it. In fact, we build bacteria who produce yellow/green color in presence of oxygen. Thus we must evaluate the penetration of the oxygen in the gel !
Line 51: Line 25:
<table>
<table>
-
       <tr>
+
       <td>
'' In an homogeneous and isotropic environment, containing particles distributed inhomogeneously,appears spontaneously a volumetric flow density vector particle $\overrightarrow{J}(M,t) $. In any point $M$ in space, this vector is proportional to the gradient of the particle density $n(M,t)$. Mathematicaly, this relationship take the form:  \[  \overrightarrow{J}(M,t) = - D  \times \nabla  n(M,t) \qquad (1) \]  where $D$ is the diffusion coefficient.''  
'' In an homogeneous and isotropic environment, containing particles distributed inhomogeneously,appears spontaneously a volumetric flow density vector particle $\overrightarrow{J}(M,t) $. In any point $M$ in space, this vector is proportional to the gradient of the particle density $n(M,t)$. Mathematicaly, this relationship take the form:  \[  \overrightarrow{J}(M,t) = - D  \times \nabla  n(M,t) \qquad (1) \]  where $D$ is the diffusion coefficient.''  
-
       </tr>
+
       </td>
<table>
<table>
Line 80: Line 54:
[[File:Paris_Saclay_oxygenGraph.jpeg|600px]]
[[File:Paris_Saclay_oxygenGraph.jpeg|600px]]
 +
 +
 +
 +
[[References:]]
[[References:]]
Line 87: Line 65:
'''[2]''' Vincent Renvoizé, ''Physique PC-PC*'', Cap Prepas, Pearson Education, 2010.
'''[2]''' Vincent Renvoizé, ''Physique PC-PC*'', Cap Prepas, Pearson Education, 2010.
-
 
-
</article>
 

Revision as of 17:08, 30 September 2014


Modeling

To realise our artwork, we use an agarose gel to obtain the shape of a lemon. To push the resemblance to the extreme, we wish to have a crust in the edge of the lemon when we seperate it. In fact, we build bacteria who produce yellow/green color in presence of oxygen. Thus we must evaluate the penetration of the oxygen in the gel ! We use the following phenomenological law suggest by Adolphe Fick in 1855:

'' In an homogeneous and isotropic environment, containing particles distributed inhomogeneously,appears spontaneously a volumetric flow density vector particle $\overrightarrow{J}(M,t) $. In any point $M$ in space, this vector is proportional to the gradient of the particle density $n(M,t)$. Mathematicaly, this relationship take the form: \[ \overrightarrow{J}(M,t) = - D \times \nabla n(M,t) \qquad (1) \] where $D$ is the diffusion coefficient.''
Referring to the article '''[1]''', the diffusion coefficient of oxygen in agarose is $ D = 0{,}256 \times 10^{-8} m^2 s^{-1} $. * To simplify the problem, we consider that the diffusion of oxygen particle occurs only in one direction. So $\overrightarrow{J}(M,t) = J(x,t) \overrightarrow{e}_x $. * Spatial variations in the density of particles are connected to spatial variations of the vector $\overrightarrow{J}(M,t)$ by '''the material's equation of conservation''' in presence of volume distribution of particle source $\sigma (x,t)$ (device which injects or subtracted particles to the system) : \[ \frac{\partial n}{\partial t} (x,t) = - \frac{\partial J}{\partial x} (x,t) + \sigma (x,t) \qquad (2) \] By replacing $(2)$ in $(1)$, we obtain the following '''equation of diffusion''' \[ \forall t, \forall x, \bigg( \frac{\partial}{\partial t} - D \frac{\partial^2}{\partial x^2} \bigg) n(x,t) = \sigma (x,t) \qquad (3) .\] As our lemon is exposed to the ambient air, we stay in steady state where the source $ \sigma (x,t) $ is equal to $N_0$ the quantity of $O_2$ in the air. To solve this equation, we use Fourier's analysis (+ d'explications) \[ \forall x, \forall t>0, n(x,t) = \frac{N_0}{\sqrt{4 \pi D t}} exp \bigg(- \frac{x^2}{4 D t} \bigg) + \int_{0}^{t} \underbrace{N_0 * exp \bigg(- \frac{|x|^2}{4 D \tau} \bigg)}_{= 0 \text{ by symmetry of the gaussian distribution }} \frac{d\tau}{\sqrt{4 \pi D \tau} } \] The average dispersion particle is given by the variance $\Delta x = \sqrt{2Dt}$. Using this formula, we deduct that oxygen will penetrate $3 \times 10^{-3} m$ in $1956.522 s = 32.6082 $ minutes. === Graphical visualization === [[File:Paris_Saclay_oxygenGraph.jpeg|600px]] [[References:]] '''[1]''' A.C. Hulst, H.J.H. Hens, R.M. Buitelaar and J. Tramper, ''Determination of the effective diffusion coefficient of oxygen in gel materials in relation to gel concentration'', Biotechnology Techniques Vol 3 No 3 199-204 (1989). '''[2]''' Vincent Renvoizé, ''Physique PC-PC*'', Cap Prepas, Pearson Education, 2010.