Team:TU Eindhoven/Modeling/Bacterial Cell Counter
From 2014.igem.org
Rafiqlubken (Talk | contribs) |
Rafiqlubken (Talk | contribs) |
||
Line 128: | Line 128: | ||
<h2>Bacterial Cell Counter</h2> | <h2>Bacterial Cell Counter</h2> | ||
<p>When photos of the microfluidics results are taken, the droplets and the cells in the droplets have to be counted. In order to have reliable results this has to be done on a large scale. To make it possible to analyses large numbers of photos a computer program has been made to do the counting. To give a better visualization of the process, a step by step analysis of an image is given below.</p> | <p>When photos of the microfluidics results are taken, the droplets and the cells in the droplets have to be counted. In order to have reliable results this has to be done on a large scale. To make it possible to analyses large numbers of photos a computer program has been made to do the counting. To give a better visualization of the process, a step by step analysis of an image is given below.</p> | ||
+ | |||
+ | <figure style="float:right;"> | ||
+ | <img id='Fig1' src="https://static.igem.org/mediawiki/2014/b/be/TU_Eindhoven_Modeling4.png" width="500" style="display: inline-block; border: 4px solid #00BAC6; padding: 4px; background: #222; margin-bottom: 10px;"> | ||
+ | <figcaption style="font-size:18px;color:#CCCCCC;">Figuur 1. Sample image used to show how the program works.</figcaption> | ||
+ | </figure> | ||
<img id='Fig1' src="https://static.igem.org/mediawiki/2014/f/fc/TU_Eindhoven_Modeling1.jpg" class="image_wrapper image_fr" width="1085"> | <img id='Fig1' src="https://static.igem.org/mediawiki/2014/f/fc/TU_Eindhoven_Modeling1.jpg" class="image_wrapper image_fr" width="1085"> |
Revision as of 10:22, 11 October 2014
Bacterial Cell Counter
When photos of the microfluidics results are taken, the droplets and the cells in the droplets have to be counted. In order to have reliable results this has to be done on a large scale. To make it possible to analyses large numbers of photos a computer program has been made to do the counting. To give a better visualization of the process, a step by step analysis of an image is given below.
Figure 1. Poisson distribution for multiple lambdas.
This allows for the determination of the ratios between one cell/zero cells and one cell/ two or more cells. These both have to be as high as possible for a specific lambda.
Figure 2. Ratio between one cell/ zero cells or more cells
Based on these results a lambda of 0.5 was chosen for the microfluidic device. The Poisson distribution for different number of cells becomes then as follows.
Figure 3.