Team:TU Eindhoven/RCA/Attaching

From 2014.igem.org

(Difference between revisions)
Line 132: Line 132:
<figure style="float:right;margin-right:0;">
<figure style="float:right;margin-right:0;">
<img id='Fig1' src="https://static.igem.org/mediawiki/2014/f/f0/TU_Eindhoven_RCA5.jpg" width="500" style="display: inline-block; border: 4px solid #00BAC6; padding: 4px; background: #222; margin-bottom: 10px;">
<img id='Fig1' src="https://static.igem.org/mediawiki/2014/f/f0/TU_Eindhoven_RCA5.jpg" width="500" style="display: inline-block; border: 4px solid #00BAC6; padding: 4px; background: #222; margin-bottom: 10px;">
-
<figcaption style="font-size:18px;color:#CCCCCC;"></figcaption>
+
<figcaption style="font-size:18px;color:#CCCCCC;">Figure 1.</figcaption>
</figure>
</figure>

Revision as of 09:23, 15 October 2014

iGEM Team TU Eindhoven 2014

iGEM Team TU Eindhoven 2014

Attaching DNA to DBCO-PEG4

For the Rolling Circle Amplification to be used on the surface of cells a DNA-primer has to be covalently linked to the cells. This primer can then be used to start the amplification of the DNA-strand to form the long strands needed for Multiple Chain Amplification. In order to attach DNA to the cell surface, the DBCO-Azido click system developed was used. The steps described focus on attaching a short DNA oligo to a DBCO-PEG4 linker molecule. This is the building block that is used to click DNA to the cells and start a Rolling Circle Amplification reaction.

Figure 1.

Summary

In order to attach DNA-primers to a cell the click-system developed by Team Eindhoven 2014 can be used. For this to work the primer needs to be functionalized with a DBCO-group. This was done by attaching a DBCO-PEG4 molecule to the oligo required for Rolling Circle Amplification.

To attach the molecules which normally don’t react together, DBCO-PEG4-NHS ester was ordered as well as a 5’-amine with a twelve carbon spacer functionalized primer. These two molecules where reacted for two hours at room temperature to form the product.

Bibliography

Mazutis, Linas, John Gilbert, W Lloyd Ung, David A Weitz, Andrew D Griffiths and John A Heyman. Single-cell analysis and sorting using droplet-based microfluidics. Nature protocols 8.5 (2013): 870-891.

iGEM Team TU Eindhoven 2014