Team:TU Eindhoven/Microfluidics/Introduction

From 2014.igem.org

(Difference between revisions)
Line 121: Line 121:
     <div id="tooplate_wrapper">
     <div id="tooplate_wrapper">
            
            
-
         <div id="contentwiki" style="height:100px;">
+
         <div id="contentwiki" style="height:1000px;">
                
                
               <div class="panel" id="home">
               <div class="panel" id="home">

Revision as of 11:00, 9 October 2014

iGEM Team TU Eindhoven 2014

iGEM Team TU Eindhoven 2014

Microfluidics: Introduction

A substantial part of the TU Eindhoven iGEM 2014 Project is Microfluidics. Microfluidics is a technique that comprises various fields of engineering. This technique operates on a microscale and thus uses small volumes. For the encapsulation of bacterial cells – as is the case for our iGEM Project – droplet-based microfluidics is used. As extensively elaborated in the General Overview Page, the engineered bacteria must be brought in the proximity of PEG polymers. The ultimate goal is to verify the intended function of a cell encapsulation device. Theoretically three processes have to be accomplished:

  1. Combining a PEG solution and a bacterial culture with our engineered E. coli bacteria. These are the essential substances to perform the click reaction. After combining, this is called the Water Phase.

  2. The Water Phase has to be dispersed with an Oil Phase into droplets. This oil phase contains a fluorosurfactant in order to prevent aggregation and agglomeration of the droplets. It is crucial to form droplets with one cell in each droplet, since it will assure that each bacterial cell is encapsulated correctly – possible formation of a film is hereby avoided.

  3. The result of the previous two processes is a droplet with PEG and engineered E. coli bacteria inside an oil phase. With a microfluidic feature (bumpy mixer) the droplet can be stirred. The droplets are collected in a chamber where the click reaction is initiated with the use of UV light.

Before these processes can be performed, certain questions have to be answered and certain research has to be done. For instance, how is it possible to form droplets? What is the optimal method to recollect the content of the droplets? And numerous of other questions that need answering for instance the required flow speed of the water and oil phase and the viscosities of the phases.

Bibliography

Agard, N. J., Prescher, J. A., & Bertozzi, C. R. (2004). A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society, 126, 15046-15047.

Baskin, J. M., & Bertozzi, C. R. (2007). Bioorthogonal click chemistry: covalent labeling in living systems. QSAR & Combinatorial Science, 26(11-12), 1211 - 1219.

Debets, M. F., Prins, J. S., Merkx, D., van Berkel, S. S., van Delft, F. L., van Hest, J. C., & Rutjes, F. P. (2014). Synthesis of DIBAC analogues with excellent SPAAC rate constants. Organic & Biomolecular Chemistry, 12, 5031-5037.

Meldal, M., & Tornoe, C. W. (2008). Cu-catalyzed azide-alkyne cycloaddition. Chemical Reviews, 108, 2952-3015.

Vugts, D. J., Vervoort, A., Stigter-van Walsum, M., Visser, G. W., Robillard, M. S., Versteegen, R. M., . . . van Dongen, G. A. (2011). Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach. Bioconjugate Chemistry, 22, 2072-2081.

Yang, M., Li, J., & Chen, P. R. (2014). Transition metal-mediated bioorthogonal protein chemistry in living cells. Chemical Society Reviews, 43(18), 6475-6660.

iGEM Team TU Eindhoven 2014