Team:SCUT/Model/Overview

From 2014.igem.org

(Difference between revisions)
 
(120 intermediate revisions not shown)
Line 1: Line 1:
{{Template:Team:SCUT/mainhead}}
{{Template:Team:SCUT/mainhead}}
 +
{{Template:Team:SCUT/Model/mainhead}}
<html>
<html>
<head>
<head>
<style type="text/css">
<style type="text/css">
-
body{height:1400px;}
+
body{height:1520px;text-align:center;}
-
#overview{position:absolute;height:750px;width:750px;top:300px;left:430px;border:1px solid #DCF1F7;}
+
#overview{position:absolute;height:auto;width:100%;top:300px;left:0px;}
-
  p.atop{position:absolute;top:20px;left:0px;width:980px;height:30px;line-height:10px;text-align:left;}
+
 
-
  p.atop span{font-size:40px;margin-left:50px;color:#66cce9;}
+
.mainbody1{height:390px;}
-
  #mainbody{position:absolute;top:30px;width:750px;height:auto;}
+
#over_right{float:right;margin:35px;margin-top:0px;}
-
  #mainbody p{margin:50px;text-align:justify;font-size:17px;font-family:Times New Roman;color:gray;line-height:40px;color:gray;}
+
-
  #mainbody p.first{margin-top:70px;}
+
-
  #mainbody p span{color:black;}
+
</style>
</style>
</head>
</head>
<body>
<body>
 +
<div id="overview">
 +
 +
<div id="combine">
<div id="left">
<div id="left">
-
<p id="click">CLICK</p>
+
<div class="navihead navihead1">
-
<div id="cebian">
+
<a href="https://2014.igem.org/Team:SCUT/Model/Overview"><img src="https://static.igem.org/mediawiki/2014/d/dc/1-01.png"></a>
-
<div class="navihead" id="first" onclick="scroll_1()">
+
-
Background
+
</div>
</div>
-
<div class="navihead" onclick="scroll_2()">
+
<div class="navibody navibody1" id="show">
-
Rubisco part
+
<p onclick="scroll_1()">Background</p>
 +
<p onclick="scroll_2()">Carbon dioxide fixed part</p>
 +
<p onclick="scroll_3()">n-butanol part</p>
</div>
</div>
-
<div class="navihead" onclick="scroll_3()">
+
<div class="navihead navihead2"><a href="https://2014.igem.org/Team:SCUT/Model/Rubisco_simulation"><img src="https://static.igem.org/mediawiki/2014/c/c6/Model2-01.png"></a>
-
N-butanol part
+
</div>
</div>
 +
<div class="navibody navibody2">
 +
<p>Introduction</p>
 +
<p>Individual part</p>
 +
<p>Complete Network</p>
 +
<p>The function of Rubisco</p>
 +
<p>Scaffold</p>
 +
<p>Reference</p>
</div>
</div>
 +
<div class="navihead navihead3">
 +
<a href="https://2014.igem.org/Team:SCUT/Model/N-butanol_simulation"><img src="https://static.igem.org/mediawiki/2014/d/d2/Model3-01.png"></a>
</div>
</div>
-
<script type="text/javascript">
+
<div class="navibody navibody3">
-
$(document).ready(function(){
+
<p>Introduction</p>
-
  $("#click").toggle(
+
<p>Simulation</p>
-
  function(){
+
<p>Reference</p>
-
  $(this).animate({"marginLeft":"202px"},"fast");
+
</div>
-
  $("#cebian").fadeIn(1000); 
+
<div class="navihead navihead5">
-
            },
+
<a href="https://2014.igem.org/Team:SCUT/Model/Tips_for_other_teams"><img src="https://static.igem.org/mediawiki/2014/a/af/Model4-01.png"></a>
-
  function(){
+
</div>
-
  $(this).animate({"marginLeft":"0px"},"fast");
+
<div class="navibody navibody5">
-
  $("#cebian").fadeOut("fast");
+
<p>Outline</p>
-
            }
+
<p>Reference</p>
-
         
+
</div>
-
);
+
</div>
-
});
+
 
-
</script>
+
 
-
<script type="text/javascript">
+
 
-
$(document).ready(function(){
+
 
-
$(".navihead").mouseover(function(){
+
 
-
$(this).css({"border-bottom":"4px solid #61d5c8"});
+
<div class="mainbody mainbody1" id="label_1">
-
$(this).siblings(".navihead").css({"border":"none"});
+
-
});
+
-
$(".navihead").mouseout(function(){
+
-
$(this).css({"border":"none"});
+
-
$("#first").css({"border-bottom":"4px solid #61d5c8"});
+
-
});
+
-
});
+
-
</script>
+
-
<script type="text/javascript">
+
-
$(document).ready(function(){
+
-
var element = $("#left");
+
-
var top = element.position().top;
+
-
var pos = element.css("position");
+
-
$(window).scroll(function(){
+
-
var scrolls = $(this).scrollTop() + 150;
+
-
if(scrolls > top)
+
-
{
+
-
element.css({"position":"fixed","top":"150px"});
+
-
}
+
-
else
+
-
{
+
-
element.css({"position":pos,"top":top});
+
-
}
+
-
});
+
-
       
+
-
});
+
-
</script>
+
-
<script type="text/javascript">
+
-
function scroll(element){
+
-
var eletop = element.offset().top;
+
-
$("body,html").animate({scrollTop:eletop},600);
+
-
}
+
-
function scroll_1(){
+
-
var element = $("#label_1");
+
-
scroll(element);
+
-
}
+
-
function scroll_2(){
+
-
var element = $("#label_2");
+
-
scroll(element);
+
-
}
+
-
function scroll_3(){
+
-
var element = $("#label_3");
+
-
scroll(element);
+
-
}
+
-
</script>
+
-
<div id="overview">
+
<p class="atop">
<p class="atop">
-
<span id="label_1">OVERVIEW</span>
+
<span>Background</span>
</p>
</p>
-
<div id="mainbody">
+
<p>
-
<p class="first">
+
<img src="https://static.igem.org/mediawiki/2014/8/83/Model-outline.PNG" id="over_right">
-
The design and redesign is one of the hallmarks of synthesis biology. In order to test the consistence of the pathway we designed and the function of scaffold we used, modeling is the most powerful tool to be used before doing experiments.  
+
The design and redesign is one of the hallmarks of synthesis biology. In order to test the consistence of the pathway we designed and the function of scaffold we used, modeling is the most powerful tool to be used before doing experiments.<br/>
</p>
</p>
-
<p id="label_2">
+
</div>
-
For the Rubisco part, we use<span> ODEs (ordinary differential equations)</span> to <span>simulate the pathway</span> and proof <span>the function of Rubisco</span>. With the help of <span>parameter sweep</span>, we find out the <span>optimal reaction rate ratio</span> of the reactions involved in the scaffold. By the way ,we also use <span>the“bottom-up” strategy</span>, the most famous principle of Computer Science, to guide our work.  
+
<div class="mainbody" id="label_2">
 +
<p class="atop">
 +
<span>Carbon dioxide fixed part</span>
 +
</p>
 +
<p>
 +
For the carbon dioxide fixed part, we use<span> ODEs (ordinary differential equations)</span> to <span>simulate the pathway</span> and proof <span>the function of RuBisCo</span>. With the help of <span>parameter sweep</span>, we find out the <span>optimal reaction rate ratio</span> of the reactions involved in the scaffold. By the way ,we also use <span>the“bottom-up” strategy</span>, the most famous principle of Computer Science, to guide our work.
 +
</p>
 +
</div>
 +
<div class="mainbody" id="label_3">
 +
<p class="atop">
 +
<span>n-butanol part</span>
 +
</p>
 +
<p>
 +
For the n-butanol part, in order to simulate the n-butanol biosynthetic pathway in Saccharomyces cerevisiae mitochondria, we construct a model by using <span>Michealis-Menton kinetics</span> and <span>ODEs (ordinary differential equations)</span>. The model shows that, with high concentrations of NADH and NADPH in mitochondria, the production of n-butanol will be greatly improved.
</p>
</p>
-
<p id="label_3">
 
-
For the N-butanol part, in order to simulate the n-butanol biosynthetic pathway in Saccharomyces cerevisiae mitochondria, we construct a model by using <span>Michealis-Menton kinetics</span> and <span>ODEs (ordinary differential equations)</span>. The model shows that, with high concentrations of NADH and NADPH in mitochondria, the production of n-butanol will be greatly improved.</p>
 
<p>
<p>
<span>Besides, all of our programs run on the MATLAB.</span>
<span>Besides, all of our programs run on the MATLAB.</span>
</p>
</p>
</div>
</div>
 +
</div>
 +
 +
</div>
 +
</div>
</div>
</body>
</body>
</html>
</html>

Latest revision as of 15:05, 26 November 2014

Background

The design and redesign is one of the hallmarks of synthesis biology. In order to test the consistence of the pathway we designed and the function of scaffold we used, modeling is the most powerful tool to be used before doing experiments.

Carbon dioxide fixed part

For the carbon dioxide fixed part, we use ODEs (ordinary differential equations) to simulate the pathway and proof the function of RuBisCo. With the help of parameter sweep, we find out the optimal reaction rate ratio of the reactions involved in the scaffold. By the way ,we also use the“bottom-up” strategy, the most famous principle of Computer Science, to guide our work.

n-butanol part

For the n-butanol part, in order to simulate the n-butanol biosynthetic pathway in Saccharomyces cerevisiae mitochondria, we construct a model by using Michealis-Menton kinetics and ODEs (ordinary differential equations). The model shows that, with high concentrations of NADH and NADPH in mitochondria, the production of n-butanol will be greatly improved.

Besides, all of our programs run on the MATLAB.