Team:SCUT/Model/N-butanol simulation
From 2014.igem.org
Line 1: | Line 1: | ||
{{Template:Team:SCUT/mainhead}} | {{Template:Team:SCUT/mainhead}} | ||
+ | {{Template:Team:SCUT/Model/mainhead}} | ||
<html> | <html> | ||
<head> | <head> | ||
<style type="text/css"> | <style type="text/css"> | ||
#nb{position:absolute;top:300px;left:200px;width:980px;height:auto;} | #nb{position:absolute;top:300px;left:200px;width:980px;height:auto;} | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</style> | </style> | ||
</head> | </head> | ||
Line 20: | Line 11: | ||
<div id="nb"> | <div id="nb"> | ||
- | <div | + | <div class="mainbody "> |
<p class="atop"> | <p class="atop"> | ||
<span>Introduction</span> | <span>Introduction</span> | ||
</p> | </p> | ||
- | |||
<p class="first"> | <p class="first"> | ||
We model the biochemical reactions of this pathway by using <span>Michealis-Menton kinetics</span> and then model them by kinetics at the beginning of the reactions when no products have been accumulated. Finally, considering the special environment of mitochondria, we<span> study the effects of the high concentrations of NADH and NADPH</span> , which is abundant in mitochondria. | We model the biochemical reactions of this pathway by using <span>Michealis-Menton kinetics</span> and then model them by kinetics at the beginning of the reactions when no products have been accumulated. Finally, considering the special environment of mitochondria, we<span> study the effects of the high concentrations of NADH and NADPH</span> , which is abundant in mitochondria. | ||
</p> | </p> | ||
</div> | </div> | ||
- | + | ||
- | <div | + | <div class="mainbody mainbody2"> |
<p class="atop"> | <p class="atop"> | ||
<span>Simulation</span> | <span>Simulation</span> | ||
</p> | </p> | ||
- | |||
<p class="first"> | <p class="first"> | ||
For thiolase [erg10], the reaction is | For thiolase [erg10], the reaction is | ||
Line 44: | Line 33: | ||
</p> | </p> | ||
</div> | </div> | ||
- | + | ||
- | <div | + | <div class="mainbody mainbody2"> |
<p class="atop"> | <p class="atop"> | ||
<span>Reference</span> | <span>Reference</span> | ||
</p> | </p> | ||
- | |||
<p class="first"> | <p class="first"> | ||
[1] http://www.Brenda-enzymes.info/index.php <br/> | [1] http://www.Brenda-enzymes.info/index.php <br/> | ||
Line 59: | Line 47: | ||
</p> | </p> | ||
</div> | </div> | ||
- | + | ||
</div> | </div> |
Revision as of 10:43, 7 October 2014
Introduction
We model the biochemical reactions of this pathway by using Michealis-Menton kinetics and then model them by kinetics at the beginning of the reactions when no products have been accumulated. Finally, considering the special environment of mitochondria, we study the effects of the high concentrations of NADH and NADPH , which is abundant in mitochondria.
Simulation
For thiolase [erg10], the reaction is The rate expression is defined as
About the initial concentration
We set the concentration of Actyl-CoA to 1000μM, and consider it as a constant.
For simplify ,we set the concentration of NADH and NADPH to 200μM and 100μM respectively and also consider it as a constant .Concentrations of all other metabolite are set to 0 in the beginning.
Reference
[1] http://www.Brenda-enzymes.info/index.php
[2] Gary D. Colby and Jiann-Shin Chen. Purification and Properties of 3-Hydroxybutyryl-Coenzyme A Dehydrogenase from Clostridium beijerinckii ("Clostridium butylicum") NRRL B593. Applied And Environmental Microbiology, Oct. 1992, p. 3297-3302
[3] Robert M. Waterson, Francis J. Castellino, G.Michael Hass and Robert L. Hill, Purification and Characterization of. Crotonase from Clostridium acetobutylicum, J. Biol. Chem. 1972, 247:5266-5271.
[4] Michel Rigoulet,1 Hugo Aguilaniu,1,3 Nicole Avéret,1 Odile Bunoust,1 Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae
[5] https://2012.igem.org/Team:Shenzhen/Result/YAO.Factory
[6] RUN-TAO YAN AND JIANN-SHIN CHEN Coenzyme A-Acylating Aldehyde Dehydrogenase from Clostridium beijerinckii NRRL B592
CLICK