Team:BostonU/Chimera

From 2014.igem.org

(Difference between revisions)
Line 15: Line 15:
         <th scope="col">As synthetic biology continues to expand, researchers are producing a greater variety of novel and innovative genetic circuits. This research revolves around a standard design-build-test cycle that defines the timeline of a project from its conception. The design and assembly of constructs depends on a thorough understanding of their individual components, making thorough part characterization data essential. The fact that there is currently little standardization in DBT workflows and poorly documented standard parts libraries represents an increasingly significant stymying factor to the growth of the field, especially as more laboratories continue to share resources and data. We seek to strengthen the traditional design-build-test cycle fundamental to synthetic biology with a formalized workflow defined by bio-design automation software tools and built upon a thoroughly characterized library of parts.</th>
         <th scope="col">As synthetic biology continues to expand, researchers are producing a greater variety of novel and innovative genetic circuits. This research revolves around a standard design-build-test cycle that defines the timeline of a project from its conception. The design and assembly of constructs depends on a thorough understanding of their individual components, making thorough part characterization data essential. The fact that there is currently little standardization in DBT workflows and poorly documented standard parts libraries represents an increasingly significant stymying factor to the growth of the field, especially as more laboratories continue to share resources and data. We seek to strengthen the traditional design-build-test cycle fundamental to synthetic biology with a formalized workflow defined by bio-design automation software tools and built upon a thoroughly characterized library of parts.</th>
<th scope="col"><img src="https://static.igem.org/mediawiki/2014/d/d9/Chimera_plasmid_BU14.png" height="300" width="300" alt="ChimeraPlasmid" style="float:right" style= "margin-left:10px"><br><br><capt></capt></th>
<th scope="col"><img src="https://static.igem.org/mediawiki/2014/d/d9/Chimera_plasmid_BU14.png" height="300" width="300" alt="ChimeraPlasmid" style="float:right" style= "margin-left:10px"><br><br><capt></capt></th>
 +
      </tr>
 +
      <tr>
 +
        <th span="2" scope="col"><br>Our project </th>
 +
       </tr>
       </tr>
</table>
</table>

Revision as of 17:13, 15 July 2014



Project Chimera
As synthetic biology continues to expand, researchers are producing a greater variety of novel and innovative genetic circuits. This research revolves around a standard design-build-test cycle that defines the timeline of a project from its conception. The design and assembly of constructs depends on a thorough understanding of their individual components, making thorough part characterization data essential. The fact that there is currently little standardization in DBT workflows and poorly documented standard parts libraries represents an increasingly significant stymying factor to the growth of the field, especially as more laboratories continue to share resources and data. We seek to strengthen the traditional design-build-test cycle fundamental to synthetic biology with a formalized workflow defined by bio-design automation software tools and built upon a thoroughly characterized library of parts. ChimeraPlasmid


Our project







Our Sponsors

Retrieved from "http://2014.igem.org/Team:BostonU/Chimera"