Team:Tokyo Tech/Experiment/C4HSL-dependent 3OC12HSL production

From 2014.igem.org

(Difference between revisions)
Line 63: Line 63:
                 <div id="gototop"><a href="#"><img src="https://static.igem.org/mediawiki/2014/5/55/Tokyo_Tech_Go-to-top-icon.png" height="50" /></a></div>
                 <div id="gototop"><a href="#"><img src="https://static.igem.org/mediawiki/2014/5/55/Tokyo_Tech_Go-to-top-icon.png" height="50" /></a></div>
-
                <p align="center"><span class="title-small">Content</span></p>
+
              <p align="center"><span class="title-small">Content</span></p>
-
              <p align="left" class="info-24"><a href="#1">1. Introduction </a></p>    
+
                <p align="left" class="info-24"><a href="#1">1. Introduction </a></p>    
-
        <p align="left" class="info-24"><a href="#2">2. Summary of the experiments </a></p>
+
            <p align="left" class="info-24"><a href="#2">2. Summary of the experiments </a></p>
-
                <p align="left" class="info-24"><a href="#3">3. Results </a></p>
+
                      <p align="left" class="info-24"><a href="#3">3. Results </a></p>
-
                <p align="left" class="info-18"><a href="#3.1">3.1. C4HSL-depemdent CmR expression assay</a></p>
+
                      <p align="left" class="info-18"><a href="#3.1">3.1. C4HSL-Dependent CmR Expression Assay</a></p>
-
                <p align="left" class="info-18"><a href="#3.2">3.2. C4HSL-dependent 3OC12HSL  production assay</a></p>
+
                      <p align="left" class="info-18"><a href="#3.2">3.2. C4HSL-Dependent 3OC12HSL  Production Assay</a></p>
-
                <p align="left" class="info-24"><a href="#4">4. Materials and methods</a></p>
+
                      <p align="left" class="info-24"><a href="#4">4. Materials and methods</a></p>
-
<p align="left" class="info-18"><a href="#3.1">4.1. Construction</a></p>
+
  <p align="left" class="info-18"><a href="#3.1">4.1. Construction</a></p>
-
<p align="left" class="info-18"><a href="#3.1">4.2. Assay Protocol </a></p>
+
  <p align="left" class="info-18"><a href="#3.1">4.2. Assay Protocol </a></p>
-
<p align="left" class="info" style="text-indent:40px;"><a href="#3.2.4">4.2.1. C4HSL-depemdent CmR expression assay</a></p>
+
  <p align="left" class="info" style="text-indent:40px;"><a href="#3.2.4">4.2.1. C4HSL-Dependent CmR Expression Assay</a></p>
-
<p align="left" class="info" style="text-indent:40px;"><a href="#3.2.4">4.2.2. C4HSL-dependent 3OC12HSL production assay</a></p>
+
  <p align="left" class="info" style="text-indent:40px;"><a href="#3.2.4">4.2.2. C4HSL-Dependent 3OC12HSL Production Assay</a></p>
-
<p align="left" class="info-24"><a href="#5">5. Reference</a></p>
+
              <p align="left" class="info-24"><a href="#5">5. Reference</a></p>
-
 
+
                      <div class="title" style="clear: both;">&nbsp;</div>
               <table width="900" border="0">
               <table width="900" border="0">
                 <tr>
                 <tr>
-
                   <td width="890"><div align="center" class="title-small">C4HSL-dependent 3OC12HSL production module</div></td>
+
                   <td colspan="2"><h2>1. Introduction</h2></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2"><p class="info-18">We created a  symbiosis of Company E. coli and Customer E. coli for reproducing the situation  in real economy. We used signaling molecules and antibiotics resistance gene,  and constructed signal-dependent signal production in our system. In our bank  story, we used signaling molecules C4HSL as money. For construction of the  C4HSL-dependent chloramphenicol resistance (CmR) and 3OC12HSL production  module, we designed a new part Prhl(RL)-CmR-LasI(<a href="http://parts.igem.org/Part:BBa_K1529302">BBa_K1529302</a>). Prhl(RL)-CmR-LasI cell is an engineered E. coli that contains  a C4HSL-dependent LasI generator and a constitutive RhlR generator. As a constitutive  RhlR generator, we used Ptet-RhlR. In our bank story, this part is Company.  (Fig. 3-3-1-1.)</p>                  </td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><h2>1. Summary of the experiment </h2></td>
+
                   <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">Construction of the C4HSL-dependent 3OC12HSL production and chloramphenicol resistance expression module.</p>                   </td>
+
                   <td colspan="2"><div align="center">Fig. 3-3-1-1 Company’s Genetic Circuit</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">We created a symbiosis of Company E.coli and Customer E.coli for reproducing the situation in real economy. We used signaling molecules and antibiotics resistance gene ,and constructed signal-dependent signal production in our system.                  </p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">For construction of the C4HSL-dependent chloramphenicol resistance (CmR) and 3OC12HSL production module, we constructed a new part Plux-CmR-lasI (BBa_). Plux-CmR-lasI cell is an engineered E.coli that contains a C4HSL-dependent lasI generator and a constitutive rhlR generator. We constructed a new Biobrick part Plux-CmR-lasI by combining Plux-CmR (BBa_K39562) and lasI (BBa_). As a constitutive rhlR generator, we used Pret-rhlR (BBa_S0319). In our bank story, this part is company.                   </p></td>
+
                   <td colspan="2"><p class="info-18">In order to  confirm Company’s dependency on C4HSL, we measured the growth of Company cell and expression of 3OC12HSL in the presence and absence of C4HSL. </p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">1-1 C4HSL-dependent 3OC12HSL production </p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">First, we performed a reporter assay by using Lux reporter cell to characterize the function of C4HSL-dependent 3OC12HSL production. As the negative control of 3OC12HSL production, we prepared 3OC12HSL non-producer cell. 3OC12HSL non-producer cell contains Plux-CmR instead of Plux-CmR-lasI. The cell of negative control does not produce 3OC12HSL even in the presence of C4HSL.</p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td width="445"><div align="center"><a href="#"><img src="" width="300" /></a></div></td>
 +
                  <td width="445"><div align="center"><a href="#"><img src="" width="300" /></a></div></td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td><p class="info-18">Sender</p></td>
+
                   <td><div align="center">Fig. 3-3-1-2. C4HSL-depemdent CmR expression Assay  Flow Chart</div></td>
 +
                  <td><div align="center">Fig. 3-3-1-3. C4HSL-dependent 3OC12HSL <br />
 +
                  production Assay  Flow Chart</div></td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td><div align="center"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></div></td>
+
                   <td colspan="2"><h2>2. Summary of the experiments</h2></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></div></td>
+
                   <td colspan="2"><p class="info-18">To  confirm function of Company cell, we performed two kinds of assays. One is C4HSL-Dependent  CmR Expression Assay. In this experiment we prepared four plasmid sets (A, B, C, D) shown  in below. (Fig. 3-3-2-1.) Concurrently with C4HSL  induction, we added chloramphenicol into the medium containing Company cell and  measured optical density for about 8 h to estimate  the concentration of the cell. The other is C4HSL-Dependent 3OC12HSL Production  Assay. In this experiment we prepared three more plasmid sets (E, F, G) shown  in below. (Fig. 3-3-2-1.) First, we  added C4HSL to the culture of sender cell, and induced the expression of LasI. Then,  the supernatants of the culture were used as the  inducer in the reporter assay. We measured the  expression of GFP in reporter cells by flow cytometer.</p>                   </td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></div></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">Repoter</p></td>
+
                   <td colspan="2"><div align="center">Fig.3-3-2-1.  Constructed plasmids</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></div></td>
+
                   <td colspan="2"><p class="info-18">We prepared four conditions as  follow.</p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></div></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></div></td>
+
                   <td colspan="2" class="head">Sender: </td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2" class="info-18">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">We prepared four culture conditions as follow.</p></td>
+
                   <td colspan="2" class="info-18">A-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1)  and Prhl(RL)-CmR-LasI(pSB3K3) cell with C4HSL induction</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">    A) Culture containing Plux-CmR-LasI cell with C4HSL induction</td>
+
                   <td colspan="2" class="info-18">A-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1)  and Prhl(RL)-CmR-LasI(pSB3K3) cell with DMSO (no induction)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">    B) Culture containing Plux-CmR-LasI cell without C4HSL induction</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">    C) Culture containing Plux-CmR cell with C4HSL induction</td>
+
                   <td colspan="2" class="info-18">B-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1)  and PlacIq-CmR(pSB3K3) cell with C4HSL induction (C4HSL-Dependent CmR Expression  Assay Positive control)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">    D) Culture containing Plux-CmR cell without C4HSL induction</td>
+
                   <td colspan="2" class="info-18">B-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1)  and PlacIq-CmR (pSB3K3) cell with DMSO (no induction) (C4HSL-Dependent CmR Expression  Assay Positive control)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">The supernatants of this four different culture were used as the inducer in the reporter assay.</p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2" class="info-18">C-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1)  and Promoter-less-CmR(pSB3K3) cell with C4HSL induction (C4HSL-Dependent CmR Expression  Assay Negative control)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">In the reporter assay, we used a Lux reporter strain that contains Ptet-luxR and Plux-GFP. Also, a reporter cell that expresses GFP constitutively and a reporter cell that does not express GFP were used as the positive control and the negative control, respectively.</p></td>
+
                   <td colspan="2" class="info-18">C-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1)  and Promoter-less-CmR (pSB3K3) cell with DMSO (no induction) (C4HSL-Dependent CmR Expression  Assay Negative control)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">1-2 C4HSL-dependent growth</p></td>
+
                   <td colspan="2" class="info-18">D-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and Plux-CmR(pSB3K3) cell with C4HSL induction (C4HSL-Dependent 3OC12HSL Production  Assay Negative control)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">The cell which contains Plux-CmR-lasI can grow in the medium containing chloramphenicol<br />
+
                   <td colspan="2" class="info-18">D-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1)  and Plux-CmR(pSB3K3) cell with DMSO (no induction) (C4HSL-Dependent 3OC12HSL Production  Assay Negative control)</td>
-
                  (Chloramphenicol is one of the antibiotics. )                   </p></td>
+
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">After induction, we added chloramphenicol into the medium and measured optical density<br />
+
                   <td colspan="2">&nbsp;</td>
-
                  after induction.</p></td>
+
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2" class="head">Reporter:</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><h2>2.  Results</h2></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2" class="info-18">E) Culture containing Ptet-RhlR(pSB6A1) and Prhl(RL)-GFP(pSB3K3)  cell </td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">2-1  C4HSL-dependent 3OC12HSL production</p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">We measured the expression of GFP in the reporter cell by flow cytometer.</p></td>
+
                   <td colspan="2" class="info-18">F) Culture containing Ptet-RhlR(pSB6A1) and PlacIq-GFP(pSB3K3)  cell </td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">2-2 C4HSL-dependent growth</p>                  </td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">After induction, optical density were measured to estimate the concentration of the cell.</p></td>
+
                   <td colspan="2" class="info-18">G) Culture containing Ptet-RhlR(pSB6A1) and Promoter-less-GFP(pSB3K3)  cell </td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-1-1.png"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></a></div></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td><div align="center">Fig. 3-1-1. </div></td>
+
                   <td colspan="2"><h2>3. Result</h2></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_3-1-2.png"><img src="http://sg.openrice.com/images/v4/previewimg/sr1-icon-noResult.png" alt="" width="600" /></a></div></td>
+
                   <td colspan="2"><h1>3-1. C4HSL-Dependent CmR Expression Assay</h1></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><div align="center">Fig. 3-1-2. </div></td>
+
                   <td colspan="2"><p class="info-18">After  induction, optical densities were measured to estimate the concentration of the  cell. We prepared two types of culture conditions which is different in concentration  of chloramphenicol. (Without chloramphenicol and 100 microg/ml) </p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">explanation?    </p>                   </td>
+
                   <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2"><div align="center">Fig. 3-3-3-1. C4HSL-Dependent Company Growth in no  Cm</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><h2>3.  Materials and methods</h2></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">3-1 Construction</p></td>
+
                   <td colspan="2"><div align="center">Fig. 3-3-3-2. C4HSL-Dependent Company Growth in 100 microg/mL Cm</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">-Strain</p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">All the samples were JM2.300 strain</p></td>
+
                   <td colspan="2"><p class="info-18">Fig.3-3-3-1.  shows every cell can grow in the absence of chloramphenicol. Conversely, Fig.3-3-3-2.  shows some cells cannot grow in presence of chloramphenicol. With induction of  C4HSL, the cell containing Prhl(RL)-CmR-LuxI can grow in the presence of  chloramphenicol. (The growth curve of the cell is same as the growth curve of  positive control.) However, without induction of C4HSL, the cell cannot express  CmR and cannot grow in the presence of chloramphenicol. (The growth curve of  the cell is same as the growth curve of negative control.) As a result, only  with induction of C4HSL, Prhl(RL)-CmR-LuxI (<a href="http://parts.igem.org/Part:BBa_K1529302">BBa_K1529302</a>) cell can  express CmR and grow well.</p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">-Plasmids</p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td>&nbsp;</td>
+
                   <td colspan="2"><h1>3-2. C4HSL-Dependent 3OC12HSL Production Assay</h1></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="head">3-2 </p></td>
+
                   <td colspan="2"><p class="info-18">Four hours after addition of the supernatants from  the culture of sender cells, we measured the expression of GFP in the reporter  cells by flow cytometer.</p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18" style="text-indent:0px;">3-2-1.  C4HSL-dependent 3OC12HSL production assay by using reporter assay</p></td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18">Prepare the supernatant of the sender cell</p></td>
+
                   <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">1. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.</td>
+
                   <td colspan="2"><div align="center">Fig. 3-3-3-3. C4HSL-Dependent 3OC12HSL Production Assay result</div></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37C until the observed OD590 reaches 0.5. </td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">3. Centrifuge 1mL of the sample at 5000g, RT for 1 minute.</td>
+
                   <td colspan="2"><p class="info-18">As Fig. 3-3-3-3. shows, when the supernatant of condition ??? was  used, the fluorescence intensity of the reporter cell increased. Comparing the  results of condition ??? and ???, reporter cell in the supernatant of induced  Company cell culture had the ???-fold higher fluorescence intensity. This  result indicates that Company cell produced 3OC12HSL in response to C4HSL  induction by the function of Prhl(RL)-CmR-LasI.</p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">4. Suspend the pellet in<u> </u><u>1 mL of LB containing Ampicillin</u><u>(</u><u>50μg/mL</u><u>)</u><u>and Kanamycin(30μg/mL) .</u></td>
+
                   <td colspan="2"><p class="info-18">From these experiments, we confirmed that a new part  Prhl(RL)-CmR-LasI (<a href="http://parts.igem.org/Part:BBa_K1529302">BBa_K1529302</a>)  synthesized CmR and 3OC12HSL in the presence of C4HSL.</p></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">5. Add 30&#181;L of suspension in the following medium.</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">           Add 30&#181;L of 500&#181;M C12HSL to 3mL LB containing Amp and Kan</td>
+
                   <td colspan="2"><h2>4. Materials and methods</h2></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">           Add 30&#181;L DMSO to 3mL of LB containing Amp and Kan                 </td>
+
                   <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><h1>4-1 Construction</h1></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="head">-Strain</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">All  the samples were JM2.300 strain.</p>                  </td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="head">-Plasmids</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18" style="text-indent:0px;"><strong>Sender:</strong></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18"><div align="left">A. Ptet-GFP-Ptet-RhlR (psB6A1),  Prhl(RL)-CmR-lasI(pSB3K3)</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig.  3-3-4-1.</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                 </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">B. Ptet-GFP-Ptet-RhlR (psB6A1), PlacIq-CmR (pSB3K3)  (C4HSL-Dependent  CmR Expression Assay Positive control)</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig.  3-3-4-2.</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">C. Ptet-GFP-Ptet-RhlR (pSB6A1), promoter less CmR  (pSB3K3) (C4HSL-Dependent  CmR Expression Assay Negative control)</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig.  3-3-4-3.</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">D. Ptet-GFP-Ptet-RhlR (pSB6A1), Plux-CmR (pSB3K3)  (C4HSL-Dependent 3OC12HSL Production Assay Negative control)</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig.  3-3-4-4.</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18" style="text-indent:0px;"><strong>Reporter:</strong></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">E. Ptet-luxR (pSB6A1), Plux-GFP (pSB3K3) </td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig.  3-3-4-5.</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">F. Ptet-LuxR (pSB6A1), PlacIq-GFP (pSB3K3) (Positive  control)</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig.  3-3-4-6.</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">G. Ptet-LuxR (pSB6A1), Promoter-less-GFP (pSB3K3) (Negative  control)</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="#"><img src="" width="500" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig.  3-3-4-7.</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                  
                  
                 <tr>
                 <tr>
-
                   <td class="info-18">6. Grow the samples of sender cell at 37°C for 4 hours.</td>
+
                   <td colspan="2"><h1>4-2. Assay Protocol </h1></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">7. Measure optical density every hour.  (If optical density is over 1.0, dilute the cell medium.)</td>
+
                   <td colspan="2"><p class="info-18" style="text-indent:0px;"><strong>4-2-1. C4HSL-Dependent CmR Expression Assay</strong></p></td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td class="info-18">8. Centrifuge sample at 9000g, 4°C for 1minute. Filter sterilize supernatant.</td>
+
                   <td colspan="2" class="info-18">1. Grow the colony of sender cell in LB containing antibiotic  O/N at 37°C.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">9. Use the supernatant in reporter assay.</td>
+
                   <td colspan="2" class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C <br />
 +
          until the observed OD590 reaches 0.5. If the OD becomes over 0.5, dilute to 0.5 with LB  medium.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">&nbsp;</td>
+
                   <td colspan="2" class="info-18">3. Add 30  microL of suspension in the following medium.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><p class="info-18"><strong>Reporter Assay</strong></p></td>
+
                   <td colspan="2" class="info-18">          1) 3 mL  of LB containing Amp and Kan + 3 microL C4HSL (5 microM)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">1. Grow the colony of Reporter cell(D~Fin LB containing antibiotic O/N at 37°C.</td>
+
                   <td colspan="2" class="info-18">          2) 3 mL of LB containing Amp and Kan + 3 microL DMSO</td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB+  antibiotic and grow the cells at 37°C until you reach an 0.5 OD590. (fresh culture).</td>
+
                   <td colspan="2" class="info-18">          3) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100 microg/mL) <br />
 +
                                                      + 30 microL C4HSL (500 microM)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">3. Centrifuge sample at 5000g, 25°C RT for 1 minute. Discard the supernatant.</td>
+
                   <td colspan="2" class="info-18">          4) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100 microg/mL) + 30  microL DMSO</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">4. Suspended the sample in 3 mL of LB containing Ampicillin(50μg/mL) and Kanamycin(30μg/mL).</td>
+
                   <td colspan="2" class="info-18">4. Grow  the samples of sender cells at 37°C for more than 8 hours.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">5. Add 30&#181;L of suspension in the following medium.</td>
+
                   <td colspan="2" class="info-18">5. Measure optical density every hour. (If optical  density is over 1.0, dilute the cell medium to 1/10.)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">           Filtrate  of A①+3mL of  LB containing Amp and Kan</td>
+
                   <td colspan="2">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">           Filtrate  of A②+3mL of  LB containing Amp and Kan</td>
+
                   <td colspan="2"><p class="info-18" style="text-indent:0px;"><strong>4-2-2. C4HSL-Dependent 3OC12HSL Production Assay</strong></p></td>
                 </tr>
                 </tr>
 +
               
                 <tr>
                 <tr>
-
                   <td class="info-18">           Filtrate of B①+3mL of  LB containing Amp and Kan</td>
+
                   <td colspan="2" class="info-18">1. Prepare the supernatant of the sender cell</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">           Filtrate of B②+3mL of  LB containing Amp and Kan</td>
+
                   <td colspan="2" class="info-18">2. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">           Filtrate  of C①+3mL of  LB containing Amp and Kan</td>
+
                   <td colspan="2" class="info-18">3. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C until the observed OD590  reaches 0.5.If the OD becomes over 0.5, dilute to o.5 with LB medium.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">          Filtrate  of C②+3mL of  LB containing Amp and Kan</td>
+
                   <td colspan="2" class="info-18">4. Add 30 microL of suspension in the following medium.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">          3OC12HSL+3mL of LB containing Amp and Kan</td>
+
                   <td colspan="2" class="info-18">          1) Add 30  microL of 500 microM C4HSL to 3 mL LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">          DMSO + 3mL of LB containing Amp and Kan</td>
+
                   <td colspan="2" class="info-18">          2) Add 30 microL DMSO to 3 mL of LB containing Amp+Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">6. Grow  the samples of Reporter cell in incubator at 37°C for 4 hours.</td>
+
                   <td colspan="2" class="info-18">5 .Grow  the samples of sender cell at 37°C for 4 hours.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">7. Start preparing the flow cytometer 1 h before the end of incubation.</td>
+
                   <td colspan="2" class="info-18">6. Measure optical density every hour. (If optical density is over 1.0, dilute the cell medium to 1/10.)</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">8. Take 200 microL of the sample, and centrifuge at 9000 Xg, 1 min, 4°C.</td>
+
                   <td colspan="2" class="info-18">7. Centrifuge sample at 9000x g, 4°C for 1minute.Filter sterilize supernatant.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">9. Remove the supernatant by using P1000 pipette.</td>
+
                   <td colspan="2" class="info-18">8. Use the supernatant in reporter assay.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">10. Add 1 mL  of filtered PBS (phosphate-buffered saline) and suspend.</td>
+
                   <td colspan="2" class="info-18">&nbsp;</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">11. Dispense  all of each suspension into a disposable tube through a cell strainer.</td>
+
                   <td colspan="2" class="info-18" style="text-indent:0px;"><strong>Reporter Assay</strong></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">12. Use  flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company).</td>
+
                   <td colspan="2" class="info-18">1. Grow the colony of  Reporter cell (D~F) in LB containing antibiotic(Amp and Kan) over night at 37°C.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">&nbsp;</td>
+
                   <td colspan="2" class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB+  antibiotic and grow the cells at 37°C until you reach an 0.5 in OD590 (fresh  culture).</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="head"><p>3-2-2. C4HSL-depemdent CmR expression</p></td>
+
                   <td colspan="2" class="info-18">3. Add 30  microL of suspension in the following medium.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">1. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.</td>
+
                   <td colspan="2" class="info-18">          1) Filtrate  of A①+3mL of  LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">2. Make a 1:100 dilution in 3 mL of fresh LB containig antibiotic and grow the cells at 37°C until the observed OD590 reaches  0.5 (fresh culture).</td>
+
                   <td colspan="2" class="info-18">          2) Filtrate  of A②+3mL of  LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">3. Centrifuge 1mL of the sample at 5000g, RT for 1 minute.</td>
+
                   <td colspan="2" class="info-18">          3) Filtrate of B①+3mL of  LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">4. Suspend the pellet in <u>1 mL of LB containing Ampicillin(50 microg/mL)and Kanamycin(30 microg/mL)</u></td>
+
                   <td colspan="2" class="info-18">          4) Filtrate  of B②+3mL of  LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">5. Add 30&#181;L of suspension in the following medium.</td>
+
                   <td colspan="2" class="info-18">          5) Filtrate  of C①+3mL of LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">         Add 3&#181;L of 5&#181;M C12HSL to 3mL LB containing Amp, Kan(concentration  is described upper) and Cm(100 microg /mL).</td>
+
                   <td colspan="2" class="info-18">          6) Filtrate  of C②+3mL of  LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">         Add 3microL DMSO to 3mL  of LB containing Amp and Kan.</td>
+
                   <td colspan="2" class="info-18">          7) C4HSL+3mL of LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">6. Grow the samples of sender cell at 37°C for 4 hours.</td>
+
                   <td colspan="2" class="info-18">          8) DMSO + 3mL of LB containing Amp and Kan</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">7. Measure optical density every hour.  (If optical density is over 1.0, dilute the cell medium.)</td>
+
                   <td colspan="2" class="info-18">4. Grow the samples of Reporter cell in incubator at 37°C for 4 hours.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">&nbsp;</td>
+
                   <td colspan="2" class="info-18">5. Start  preparing the flow cytometer 1 h before the end of incubation.</td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td><h2>4. Reference</h2></td>
+
                   <td colspan="2" class="info-18">6. After  incubation, take the sample, and centrifuge at 9000x g, 1 min, 4°C.</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">7. Remove  the supernatant by using P1000 pipette.</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">8. Add 1  mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is  0.3.)</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">9. Dispense  all of each suspension into a disposable tube through a cell strainer.</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">10. Use  flow cytometer to measure the fluorescence  of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton,  Dickenson and Company.)</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-18">&nbsp;</td>
 +
                </tr>
 +
               
 +
                <tr>
 +
                  <td colspan="2"><h2>5. Reference</h2></td>
                 </tr>
                 </tr>
                 <tr>
                 <tr>
-
                   <td class="info-18">&nbsp;</td>
+
                   <td colspan="2" class="info-18">1. Bo Hu <em>et al.</em> (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5):  e10619</td>
                 </tr>
                 </tr>
               </table>
               </table>
Line 404: Line 563:
  </div>
  </div>
<!-- end #content -->
<!-- end #content -->
-
+
<div style="clear: both;">&nbsp;</div>
-
<div style="clear: both;">&nbsp;</div>
+
  </div>
-
        </div>
+
<!-- end #page -->
<!-- end #page -->
</div>
</div>

Revision as of 09:21, 17 October 2014

Tokyo_Tech

Experiment

C4HSL-dependent 3OC12HSL production

 

Content

1. Introduction

2. Summary of the experiments

3. Results

3.1. C4HSL-Dependent CmR Expression Assay

3.2. C4HSL-Dependent 3OC12HSL Production Assay

4. Materials and methods

4.1. Construction

4.2. Assay Protocol

4.2.1. C4HSL-Dependent CmR Expression Assay

4.2.2. C4HSL-Dependent 3OC12HSL Production Assay

5. Reference

 

1. Introduction

We created a symbiosis of Company E. coli and Customer E. coli for reproducing the situation in real economy. We used signaling molecules and antibiotics resistance gene, and constructed signal-dependent signal production in our system. In our bank story, we used signaling molecules C4HSL as money. For construction of the C4HSL-dependent chloramphenicol resistance (CmR) and 3OC12HSL production module, we designed a new part Prhl(RL)-CmR-LasI(BBa_K1529302). Prhl(RL)-CmR-LasI cell is an engineered E. coli that contains a C4HSL-dependent LasI generator and a constitutive RhlR generator. As a constitutive RhlR generator, we used Ptet-RhlR. In our bank story, this part is Company. (Fig. 3-3-1-1.)

 
Fig. 3-3-1-1 Company’s Genetic Circuit
 

In order to confirm Company’s dependency on C4HSL, we measured the growth of Company cell and expression of 3OC12HSL in the presence and absence of C4HSL.

 
 
Fig. 3-3-1-2. C4HSL-depemdent CmR expression Assay Flow Chart
Fig. 3-3-1-3. C4HSL-dependent 3OC12HSL
production Assay Flow Chart
 

2. Summary of the experiments

To confirm function of Company cell, we performed two kinds of assays. One is C4HSL-Dependent CmR Expression Assay. In this experiment we prepared four plasmid sets (A, B, C, D) shown in below. (Fig. 3-3-2-1.) Concurrently with C4HSL induction, we added chloramphenicol into the medium containing Company cell and measured optical density for about 8 h to estimate the concentration of the cell. The other is C4HSL-Dependent 3OC12HSL Production Assay. In this experiment we prepared three more plasmid sets (E, F, G) shown in below. (Fig. 3-3-2-1.) First, we added C4HSL to the culture of sender cell, and induced the expression of LasI. Then, the supernatants of the culture were used as the inducer in the reporter assay. We measured the expression of GFP in reporter cells by flow cytometer.

 
Fig.3-3-2-1. Constructed plasmids
 

We prepared four conditions as follow.

 
Sender:
 
A-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and Prhl(RL)-CmR-LasI(pSB3K3) cell with C4HSL induction
A-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and Prhl(RL)-CmR-LasI(pSB3K3) cell with DMSO (no induction)
 
B-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and PlacIq-CmR(pSB3K3) cell with C4HSL induction (C4HSL-Dependent CmR Expression Assay Positive control)
B-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and PlacIq-CmR (pSB3K3) cell with DMSO (no induction) (C4HSL-Dependent CmR Expression Assay Positive control)
 
C-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and Promoter-less-CmR(pSB3K3) cell with C4HSL induction (C4HSL-Dependent CmR Expression Assay Negative control)
C-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and Promoter-less-CmR (pSB3K3) cell with DMSO (no induction) (C4HSL-Dependent CmR Expression Assay Negative control)
 
D-1) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and Plux-CmR(pSB3K3) cell with C4HSL induction (C4HSL-Dependent 3OC12HSL Production Assay Negative control)
D-2) Culture containing Ptet-GFP-Ptet-RhlR(pSB6A1) and Plux-CmR(pSB3K3) cell with DMSO (no induction) (C4HSL-Dependent 3OC12HSL Production Assay Negative control)
 
Reporter:
 
E) Culture containing Ptet-RhlR(pSB6A1) and Prhl(RL)-GFP(pSB3K3) cell
 
F) Culture containing Ptet-RhlR(pSB6A1) and PlacIq-GFP(pSB3K3) cell
 
G) Culture containing Ptet-RhlR(pSB6A1) and Promoter-less-GFP(pSB3K3) cell
 

3. Result

 

3-1. C4HSL-Dependent CmR Expression Assay

After induction, optical densities were measured to estimate the concentration of the cell. We prepared two types of culture conditions which is different in concentration of chloramphenicol. (Without chloramphenicol and 100 microg/ml)

 
Fig. 3-3-3-1. C4HSL-Dependent Company Growth in no Cm
 
Fig. 3-3-3-2. C4HSL-Dependent Company Growth in 100 microg/mL Cm
 

Fig.3-3-3-1. shows every cell can grow in the absence of chloramphenicol. Conversely, Fig.3-3-3-2. shows some cells cannot grow in presence of chloramphenicol. With induction of C4HSL, the cell containing Prhl(RL)-CmR-LuxI can grow in the presence of chloramphenicol. (The growth curve of the cell is same as the growth curve of positive control.) However, without induction of C4HSL, the cell cannot express CmR and cannot grow in the presence of chloramphenicol. (The growth curve of the cell is same as the growth curve of negative control.) As a result, only with induction of C4HSL, Prhl(RL)-CmR-LuxI (BBa_K1529302) cell can express CmR and grow well.

 

3-2. C4HSL-Dependent 3OC12HSL Production Assay

Four hours after addition of the supernatants from the culture of sender cells, we measured the expression of GFP in the reporter cells by flow cytometer.

 
Fig. 3-3-3-3. C4HSL-Dependent 3OC12HSL Production Assay result
 

As Fig. 3-3-3-3. shows, when the supernatant of condition ??? was used, the fluorescence intensity of the reporter cell increased. Comparing the results of condition ??? and ???, reporter cell in the supernatant of induced Company cell culture had the ???-fold higher fluorescence intensity. This result indicates that Company cell produced 3OC12HSL in response to C4HSL induction by the function of Prhl(RL)-CmR-LasI.

From these experiments, we confirmed that a new part Prhl(RL)-CmR-LasI (BBa_K1529302) synthesized CmR and 3OC12HSL in the presence of C4HSL.

 

4. Materials and methods

 

4-1 Construction

-Strain

All the samples were JM2.300 strain.

-Plasmids

Sender:
 
A. Ptet-GFP-Ptet-RhlR (psB6A1), Prhl(RL)-CmR-lasI(pSB3K3)
 
Fig. 3-3-4-1.
 
B. Ptet-GFP-Ptet-RhlR (psB6A1), PlacIq-CmR (pSB3K3) (C4HSL-Dependent CmR Expression Assay Positive control)
 
Fig. 3-3-4-2.
 
C. Ptet-GFP-Ptet-RhlR (pSB6A1), promoter less CmR (pSB3K3) (C4HSL-Dependent CmR Expression Assay Negative control)
 
Fig. 3-3-4-3.
 
D. Ptet-GFP-Ptet-RhlR (pSB6A1), Plux-CmR (pSB3K3) (C4HSL-Dependent 3OC12HSL Production Assay Negative control)
 
Fig. 3-3-4-4.
 
Reporter:
 
E. Ptet-luxR (pSB6A1), Plux-GFP (pSB3K3)
 
Fig. 3-3-4-5.
 
F. Ptet-LuxR (pSB6A1), PlacIq-GFP (pSB3K3) (Positive control)
 
Fig. 3-3-4-6.
 
G. Ptet-LuxR (pSB6A1), Promoter-less-GFP (pSB3K3) (Negative control)
 
Fig. 3-3-4-7.
 

4-2. Assay Protocol

4-2-1. C4HSL-Dependent CmR Expression Assay

1. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.
2. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C
          until the observed OD590 reaches 0.5. If the OD becomes over 0.5, dilute to 0.5 with LB medium.
3. Add 30 microL of suspension in the following medium.
          1) 3 mL of LB containing Amp and Kan + 3 microL C4HSL (5 microM)
          2) 3 mL of LB containing Amp and Kan + 3 microL DMSO
          3) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100 microg/mL)
                   + 30 microL C4HSL (500 microM)
          4) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100 microg/mL) + 30 microL DMSO
4. Grow the samples of sender cells at 37°C for more than 8 hours.
5. Measure optical density every hour. (If optical density is over 1.0, dilute the cell medium to 1/10.)
 

4-2-2. C4HSL-Dependent 3OC12HSL Production Assay

1. Prepare the supernatant of the sender cell
2. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.
3. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C until the observed OD590 reaches 0.5.If the OD becomes over 0.5, dilute to o.5 with LB medium.
4. Add 30 microL of suspension in the following medium.
          1) Add 30 microL of 500 microM C4HSL to 3 mL LB containing Amp and Kan
          2) Add 30 microL DMSO to 3 mL of LB containing Amp+Kan
5 .Grow the samples of sender cell at 37°C for 4 hours.
6. Measure optical density every hour. (If optical density is over 1.0, dilute the cell medium to 1/10.)
7. Centrifuge sample at 9000x g, 4°C for 1minute.Filter sterilize supernatant.
8. Use the supernatant in reporter assay.
 
Reporter Assay
1. Grow the colony of Reporter cell (D~F) in LB containing antibiotic(Amp and Kan) over night at 37°C.
2. Make a 1:100 dilution in 3 mL of fresh LB+ antibiotic and grow the cells at 37°C until you reach an 0.5 in OD590 (fresh culture).
3. Add 30 microL of suspension in the following medium.
          1) Filtrate of A①+3mL of LB containing Amp and Kan
          2) Filtrate of A②+3mL of LB containing Amp and Kan
          3) Filtrate of B①+3mL of LB containing Amp and Kan
          4) Filtrate of B②+3mL of LB containing Amp and Kan
          5) Filtrate of C①+3mL of LB containing Amp and Kan
          6) Filtrate of C②+3mL of LB containing Amp and Kan
          7) C4HSL+3mL of LB containing Amp and Kan
          8) DMSO + 3mL of LB containing Amp and Kan
4. Grow the samples of Reporter cell in incubator at 37°C for 4 hours.
5. Start preparing the flow cytometer 1 h before the end of incubation.
6. After incubation, take the sample, and centrifuge at 9000x g, 1 min, 4°C.
7. Remove the supernatant by using P1000 pipette.
8. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3.)
9. Dispense all of each suspension into a disposable tube through a cell strainer.
10. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)
 

5. Reference

1. Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619