Team:BostonU/Chimera
From 2014.igem.org
(Difference between revisions)
Line 17: | Line 17: | ||
<td scope="col"><img src="https://static.igem.org/mediawiki/2014/d/d9/Chimera_plasmid_BU14.png" height="300" width="300" alt="ChimeraPlasmid" style="float:right" style= "margin-left:10px"><br><br><capt></capt></td> | <td scope="col"><img src="https://static.igem.org/mediawiki/2014/d/d9/Chimera_plasmid_BU14.png" height="300" width="300" alt="ChimeraPlasmid" style="float:right" style= "margin-left:10px"><br><br><capt></capt></td> | ||
</tr> | </tr> | ||
+ | </table> | ||
+ | <table width="100%" border="0" cellspacing="15" cellpadding="0"> | ||
+ | |||
<tr> | <tr> | ||
<td colspan="2" scope="col"> | <td colspan="2" scope="col"> |
Revision as of 18:05, 16 October 2014
Synthetic biology research revolves around design-build-test cycles for the production of genetic devices. An effective process often depends on protocol robustness and a thorough understanding of individual genetic components. Currently, limited software integration and part characterization represent significant stymying factors to the growth of the field, particularly as researchers endeavor to construct increasingly complex devices with behavior that is difficult to predict. We seek to strengthen the traditional design-build-test cycle by developing a workflow that utilizes bio-design automation software tools and builds upon a thoroughly characterized library of parts. At the start of our project, we were able to attend IWBDA 2014 and began learning about ways that other researchers incoporate software tools into the wet lab process. |
The Chimera Workflow | |
The Chimera workflow is intended to facilitate the predictive design of complex genetic regulatory networks. It employs a design-build-test engineering approach made unique by the inclusion of the following computational tools: Eugene and Pigeon for designing, Raven for assembling, and the TASBE Tools for testing genetic constructs. Depending on the researcher's knowledge of device design and assembly, the Chimera workflow can be adjusted in its reliance on the computational tools employed. | |
|
The end goal of the Chimera workflow is to collect high quality quantitative characterization data from genetic devices that can then be used to inform the users on which parts are reliable for use in more complex devices. Currently, this workflow uses flow cytometry as a means of measuring functionality of genetic devices due to the use of the TASBE tools, which allows users to easily process flow cytometry data. When it comes to the design and build aspects of this workflow, Chimera is unbiased when it comes to which assembly method the user selects thanks to Eugene and Raven, which are tools agnostic to assembly method. |
A desired genetic device behavior and an idea of the parts required are all a researcher needs to begin using Chimera. Once these characteristics have been targeted, the workflow can be used to guide a researcher to building their intended device more efficiently. The following is a general outline of the Chimera workflow. An example of BU 2014's test case can be found on our workflow page, in which we test the functionality of Chimera by using it to assemble a priority encoder. |