Team:Oxford/why do we need microcompartments
From 2014.igem.org
(Difference between revisions)
Olivervince (Talk | contribs) |
Olivervince (Talk | contribs) |
||
Line 563: | Line 563: | ||
- | + | <br><br> | |
In the models above, collisions are indicated through red marks. As suspected, the likelihood of a collision in a spatially constrained environment are far higher than in one where the molecules have complete freedom of movement. This is particularly true not only because of the region of movement allowed by the microcompartment but also the initial distance between the enzyme and substrate at the point of substrate formation. Note also that the rate of diffusion of the enzyme, in green, has been made substantially lower than that of the formaldehyde- the far lighter and therefore more diffusive compound. | In the models above, collisions are indicated through red marks. As suspected, the likelihood of a collision in a spatially constrained environment are far higher than in one where the molecules have complete freedom of movement. This is particularly true not only because of the region of movement allowed by the microcompartment but also the initial distance between the enzyme and substrate at the point of substrate formation. Note also that the rate of diffusion of the enzyme, in green, has been made substantially lower than that of the formaldehyde- the far lighter and therefore more diffusive compound. | ||
</div> | </div> |
Revision as of 06:48, 28 September 2014
#list li { list-style-image: url("https://static.igem.org/mediawiki/2014/6/6f/OxigemTick.png"); } }