Team:Oxford/why do we need microcompartments
From 2014.igem.org
(Difference between revisions)
Olivervince (Talk | contribs) |
Olivervince (Talk | contribs) |
||
Line 473: | Line 473: | ||
Proteins can be targeted into microcompartments via an 18-amino acid leader sequence that forms a well-defined helical structure (Lawrence AD, 2014). We added this leader sequence to dcmA in both E. coli and P. putida. The resulting accumulation of dcmA in the microcompartments leads to an increased local concentration of the metabolic enzyme. This allows more rapid degradation of DCM, which can diffuse freely through the plasma membrane and into microcompartments. | Proteins can be targeted into microcompartments via an 18-amino acid leader sequence that forms a well-defined helical structure (Lawrence AD, 2014). We added this leader sequence to dcmA in both E. coli and P. putida. The resulting accumulation of dcmA in the microcompartments leads to an increased local concentration of the metabolic enzyme. This allows more rapid degradation of DCM, which can diffuse freely through the plasma membrane and into microcompartments. | ||
- | + | <br><br> | |
- | + | <img src="https://static.igem.org/mediawiki/2014/c/ca/Oxford_microcomp4.png" style="float:right;position:relative; width:70%;margin-left:15%;margin-right:15%;" /> | |
+ | <br><br> | ||
+ | Oxford iGEM 2014 | ||
</div> | </div> | ||
Revision as of 22:09, 20 September 2014
#list li { list-style-image: url("https://static.igem.org/mediawiki/2014/6/6f/OxigemTick.png"); } }