Team:Glasgow/Modeling
From 2014.igem.org
(Difference between revisions)
Lowlight42 (Talk | contribs) |
Lowlight42 (Talk | contribs) |
||
Line 48: | Line 48: | ||
1. The bacteria is moving at a random angle at a certain speed.<br> | 1. The bacteria is moving at a random angle at a certain speed.<br> | ||
2. After a certain time (the “run” time), the bacteria reorientates itself (the “tumble”),<br> and sets off at a different angle. This run time can be influenced by the chemotaxic gradient,<br> if present | 2. After a certain time (the “run” time), the bacteria reorientates itself (the “tumble”),<br> and sets off at a different angle. This run time can be influenced by the chemotaxic gradient,<br> if present | ||
- | + | ||
<img id="runtumble" class="allimage" src="https://static.igem.org/mediawiki/2014/4/49/GU_run_and_tumble.PNG"/> | <img id="runtumble" class="allimage" src="https://static.igem.org/mediawiki/2014/4/49/GU_run_and_tumble.PNG"/> | ||
- | + | ||
The images below describe how the run times are influenced: if the bacteria is on a path towards the "food", it is unlikely to change direction. | The images below describe how the run times are influenced: if the bacteria is on a path towards the "food", it is unlikely to change direction. | ||
Revision as of 14:52, 6 August 2014
Section 1: Modelling of Bacteria Random Walk
Firstly, we created a very basic 2D model of a flagella propelled bacterium. This was heavily based on the “random walk” model we mentioned previously, only we introduced a small degree of order, based on a more extensive and all-encompassing model created by Dillon, Fauci and Gaver in 1995.(link to paper?)DOI: 10.1006/jtbi.1995.0251
In order to simplify the model, we made a number of assumptions. These are:
The movement of a bacteria through a medium is described thus:
1. The bacteria is moving at a random angle at a certain speed.
2. After a certain time (the “run” time), the bacteria reorientates itself (the “tumble”),
and sets off at a different angle. This run time can be influenced by the chemotaxic gradient,
if present The images below describe how the run times are influenced: if the bacteria is on a path towards the "food", it is unlikely to change direction.
Firstly, we created a very basic 2D model of a flagella propelled bacterium. This was heavily based on the “random walk” model we mentioned previously, only we introduced a small degree of order, based on a more extensive and all-encompassing model created by Dillon, Fauci and Gaver in 1995.(link to paper?)DOI: 10.1006/jtbi.1995.0251
In order to simplify the model, we made a number of assumptions. These are:
- Tumbling is instantaneous
- Chemotaxic gradient is not a factor
- An E.coil cell can be represented as a sphere
- Speed is constant (20ms-1)
The movement of a bacteria through a medium is described thus:
1. The bacteria is moving at a random angle at a certain speed.
2. After a certain time (the “run” time), the bacteria reorientates itself (the “tumble”),
and sets off at a different angle. This run time can be influenced by the chemotaxic gradient,
if present The images below describe how the run times are influenced: if the bacteria is on a path towards the "food", it is unlikely to change direction.