User:Yovaluflo

From 2014.igem.org

(Difference between revisions)
 
Line 117: Line 117:
<section id="Logos">
<section id="Logos">
<h2 style="text-align: center;">Thank You to Our Sponsors</h2>
<h2 style="text-align: center;">Thank You to Our Sponsors</h2>
-
<img src="https://static.igem.org/mediawiki/2013/f/f6/2013UCalgaryLogos.png" style="margin: 50px;"> </section>
+
<img src="" style="margin: 50px;"> </section>
</section>
</section>
</body>
</body>
</html>
</html>

Latest revision as of 13:13, 14 October 2014

Our Project

Pathogenic Enterohaemorrhagic E. coli serotype O157:H7 is a major source of foodborne illness worldwide. In Alberta, we experienced a pathogenic E. coli outbreak in late 2012, this outbreak was the result contaminated beef and led to the largest meat recall in Canadian history (Cross, 2012). Outbreaks like these cause death, hospitalizations, massive economic losses and an overall loss of consumer confidence in food safety. Ruminating animals such as cattle and sheep can harbor pathogenic E. coli asymptomatically and are a major source of contamination in many cases (Centers for Disease Control and Prevention, 2011). However consumption of pathogenic E. coli by humans can induce abdominal pain and bloody diarrhea requiring hospitalization, and in severe cases cause death (Centers for Disease Control and Prevention, 2011). Pathogenic E. coli is a major issue in the developing world where the consequences are exacerbated by the poor sanitation and rudimentary health network, the greatest risks are associated with children, the elderly and HIV positive patients (Okeke, 2009). Quick detection of the pathogen is critical to reduce waste, stop the spread of illness, and ultimately save lives. Current testing methods take a long time to complete due to the time it takes to culture E. coli and require lab equipment to amplify the target gene sequences.

One of the factors that amplifies the risk of E. coli outbreaks is the lack of a rapid, on-site detection method. In response, our team is using synthetic biology to develop a system to rapidly detect the presence of EHEC in the beef industry. Although we designed our sensor for testing in the beef industry provides, we designed it so that it can also detect EHEC in things like vegetables, water, and other livestock. By using engineered biological nanoparticles and DNA binding proteins, we can specifically detect pathogenic DNA sequences. Our biosensor functions at the genomic level to detect the presence of EHEC in a sample. This system allows us to quickly identify contamination during meat processing and also provides the ability to pre-screen cattle to limit potential sources of contamination before cattle enter the processing plant. Our system not only provides a powerful new tool for food safety, but also has the potential to act as a platform for the rapid detection of target organisms. These tests could hugely impact a myriad of industry applications ranging from the everyday, large-scale use in food safety testing and medical screening, to the specialized use in the detection and monitoring of biological weapons and hazards.

Thank You to Our Sponsors