Team:Tokyo Tech/Experiment/Prhl reporter assay

From 2014.igem.org

(Difference between revisions)
Line 64: Line 64:
                 <span class="meta">Prhl reporter assay</span>
                 <span class="meta">Prhl reporter assay</span>
    <div class="entry-long">
    <div class="entry-long">
-
<p>Under Construction!</p>
+
              <table width="900" border="0">
-
<p>&nbsp;</p>
+
                <tr>
-
<p>&nbsp;</p>
+
                  <td colspan="2"><div align="center" class="title-small">Symbiosis confirmation by co-culture</div></td>
-
<p>&nbsp;</p>
+
                </tr>
-
<p>&nbsp;</p>
+
                <tr>
-
<p>&nbsp;</p>
+
                  <td colspan="2">&nbsp;</td>
-
<div align="center"><img src="http://www.actmp2014.com/images/under_construction%20(1).png" /></div>
+
                </tr>
-
<p>&nbsp;</p>
+
                <tr>
-
<p>&nbsp;</p>
+
                  <td colspan="2">&nbsp;</td>
-
<p>&nbsp;</p>
+
                </tr>
-
<p>&nbsp;</p>
+
                <tr>
-
<p>&nbsp;</p>
+
                  <td colspan="2"><h1>1. Summary of the experiment </h1></td>
-
<p>&nbsp;</p>
+
                </tr>
-
       
+
                <tr>
-
  </div>
+
                  <td colspan="2"><p class="info-18">Rhl promoter (Prhl) is a  regulatory part activated by RhlR in the presence of N-butyryl-homoserine  lactone (also known as C4-HSL). Existing Rhl promoter (BBa_R0071) has a low  expression level even when it is activated. </p></td>
-
    </div>
+
                </tr>
-
+
                <tr>
-
  </div>
+
                  <td colspan="2"><p class="info-18">                  In order to improve this  expression level, we designed a new Lux promoter which has two RhlR binding  sites instead of two LuxR binding sites (PPrhl_RR: BBa_K1529320). </p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">To evaluate the function of this promoter, we  constructed Prhl_RR-GFP plasmids and measured the fluorescence intensity by  flow cytometer. In the measurement, we confirmed that GFP under the control of Prhl_RR  showed about ???-folds higher in the fluorescence than that of the original Prhl  (BBa_R0071) (See results).</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">However, our Prhl_RR showed significant leak in the  absence of C4HSL(See results). In order to lessen the leak and increase the  maximum expression level, we newly designed two promoters, Prhl_LR (BBa_K1529310)  and Prhl_RL (BBa_K1529300). These promoters have one LuxR binding site and one  RhlR binding site. We changed either the upper RhlR binding site of Prhl_RR to  Lux binding site (Prhl_LR) or the latter RhlR binding site to Lux binding site  (Prhl_RL).</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">Then, we inserted these promoters to the upstream  of GFP coding sequence and measured the fluorescence intensity. Prhl_LR showed  higher maximum expression level, but also showed significant leak like Prhl_RR.  On the other hand, Prhl_RL had less leak while keeping the high expression  level (See results).</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-1.png"><img src="https://static.igem.org/mediawiki/2014/thumb/d/d5/Tokyo_Tech_Fig._3-4-1.png/800px-Tokyo_Tech_Fig._3-4-1.png" alt="" width="450" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig. 3-4-1. The design of our Rhl promoters</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><h1>2. Results</h1></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">We measured GFP expression with the four different  promoters (Prhl (BBa_R0071), Prhl_RR (BBa_K1529320), Prhl_LR (BBa_K1529310) and  Prhl_RL (BBa_K1529300)) by flow cytometer. Each promoter was tested in the  presence and also in the absence of C4HSL (See Materials and Methods for  detailed procedures).</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-2.png"><img src="https://static.igem.org/mediawiki/2014/thumb/3/3d/Tokyo_Tech_Fig._3-4-2.png/588px-Tokyo_Tech_Fig._3-4-2.png" alt="" width="450" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig. 3-4-2. The four promoters we tested</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">Fig. 3-4-3 shows the fluorescence  intensity detected by flow cytometer. Fig. 3-4-4 is the extracted data which shows the comparison of Prhl, Prhl_RR,  and Prhl_RL</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">As Fig 3-4-4 shows, when  C4HSL is induced, Prhl_RR showed higher maximum expression level and higher leak  than the original Prhl.</p>                  </td>
 +
                </tr>
 +
                <tr>
 +
                  <td width="445">&nbsp;</td>
 +
                  <td width="445">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-3.png"><img src="https://static.igem.org/mediawiki/2014/thumb/2/26/Tokyo_Tech_Fig._3-4-3.png/800px-Tokyo_Tech_Fig._3-4-3.png" alt="" width="400" /></a></td>
 +
                  <td><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-4.png"><img src="https://static.igem.org/mediawiki/2014/thumb/6/6e/Tokyo_Tech_Fig._3-4-4.png/800px-Tokyo_Tech_Fig._3-4-4.png" alt="" width="400" /></a></td>
 +
                </tr>
 +
                <tr>
 +
                  <td><div align="center">Fig. 3-4-3. The Fluorescence intensity of the cells  <br />
 +
                  (with positive and negative controls)</div></td>
 +
                  <td><div align="center">Fig. 3-4-4. The fluorescence intensity of the cells  with original Prhl (BBa_R0071), Prhl_RR (BBa_K1529320), Prhl_RL (BBa_K1529300)</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td>&nbsp;</td>
 +
                  <td>&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><h1>3. Materials and methods</h1></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="head">3-1. Construction</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-24">-Strain</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">    All the samples were JM2.300 strain </p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="info-24">-Plasmids</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">    A. Ptet-RhlR (pSB6A1), Prhl-GFP (pSB3K3)</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">
 +
                    <blockquote>
 +
                      <p><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-5.png"><img src="https://static.igem.org/mediawiki/2014/2/27/Tokyo_Tech_Fig._3-4-5.png" alt="" width="800" /></a></p>
 +
                    </blockquote>
 +
                  </div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig. 3-4-5 </div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">    B. Ptet-RhlR (pSB6A1) Prhl_RR-GFP (pSB3K3)</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-6.png"><img src="https://static.igem.org/mediawiki/2014/1/10/Tokyo_Tech_Fig._3-4-6.png" alt="" width="800" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig. 3-4-6 </div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">    C. Ptet-RhlR (pSB6A1) Prhl_LR-GFP (pSB3K3)</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-7.png"><img src="https://static.igem.org/mediawiki/2014/5/50/Tokyo_Tech_Fig._3-4-7.png" alt="" width="800" /></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig. 3-4-7</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">    D. Ptet-RhlR (pSB6A1) Prhl_RL-GFP (pSB3K3)</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href"https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-8.png"><img src="https://static.igem.org/mediawiki/2014/9/98/Tokyo_Tech_Fig._3-4-8.png" alt="" width="800" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">    E. Ptet-RhlR (pSB6A1) PlacUV5-GFP (pSB3K3) ...Positive control</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-9.png"><img src="https://static.igem.org/mediawiki/2014/1/1a/Tokyo_Tech_Fig._3-4-9.png" alt="" width="800" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig. 3-4-9</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">    F. Ptet-RhlR (pSB6A1) promoter  less-GFP(pSB3K3) ...Negative control</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center"><a href="https://2014.igem.org/File:Tokyo_Tech_Fig._3-4-10.png"><img src="https://static.igem.org/mediawiki/2014/0/0a/Tokyo_Tech_Fig._3-4-10.png" alt="" width="800" /></a></div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><div align="center">Fig. 3-4-10</div></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2" class="head">3-2. Assay Protocol</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">1. Prepare  2 overnight cultures for each samples A~F in 3 mL LB medium, containing  ampicillin (50 microg /mL) and kanamycin (30 microg / mL) at 37°C for 12 h.</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">2. Dilute the overnight cultures to 1 / 100 in fresh LB medium (3 mL)  containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) (→fresh  culture). Make glycerol stocks from the remainders.</p>                    </td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">3. Incubate the fresh cultures in 37°C until the observed OD590  reaches 0.3 (Actual value 0.42).</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">4. Add 30 microL of 500 microM C4HSL or DMSO as listed below:</p>                  </td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">                    A-5 μM: A + C4HSL</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">                    A-0 μM: A + DMSO</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">B-5  μM: B + C4HSL</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">B-0  μM: B + DMSO</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">C-5  μM: C + C4HSL</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">C-0  μM: C + DMSO</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">D-5  μM: D + C4HSL</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">D-0  μM: D + DMSO</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">E-5  μM: E + C4HSL</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">E-0  μM: E + DMSO</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">F-5  μM: F + C4HSL</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><blockquote class="info-18">F-0  μM: F + DMSO</blockquote></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">5. Incubate the samples at 37°C for 4 h.</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">6. Start preparing the flow cytometer 1 h before the end of incubation.</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">7. Take 200 microL of the sample, and centrifuge at 9000 Xg, 1 min,  4°C.</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">8. Remove the supernatant by using P1000 pipette.</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">9. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend.</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">10. Dispense all of each suspension into a disposable tube through a  cell strainer. </p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">11. Measure fluorescence intensity with a flow cytometer (We used BD  FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company).</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><h1>4. References</h1></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2"><p class="info-18">[1] “Simpson’s Paradox in a Synthetic  Microbial System” John S. Chuang, Olivier Rivoire, Stanislas Leibler 9 JANUARY  2009 VOL 323 SCIENCE</p></td>
 +
                </tr>
 +
                <tr>
 +
                  <td colspan="2">&nbsp;</td>
 +
                </tr>
 +
              </table>
 +
              <p>&nbsp;</p>
 +
            </div>
 +
            </div>
 +
  </div>
<!-- end #content -->
<!-- end #content -->
-
+
<!-- end #sidebar -->
-
<div style="clear: both;">&nbsp;</div>
+
<div style="clear: both;">&nbsp;</div>
-
        </div>
+
  </div>
<!-- end #page -->
<!-- end #page -->
</div>
</div>

Revision as of 14:20, 7 October 2014

Tokyo_Tech

Experiment

Prhl reporter assay
Symbiosis confirmation by co-culture
 
 

1. Summary of the experiment

Rhl promoter (Prhl) is a regulatory part activated by RhlR in the presence of N-butyryl-homoserine lactone (also known as C4-HSL). Existing Rhl promoter (BBa_R0071) has a low expression level even when it is activated.

In order to improve this expression level, we designed a new Lux promoter which has two RhlR binding sites instead of two LuxR binding sites (PPrhl_RR: BBa_K1529320).

To evaluate the function of this promoter, we constructed Prhl_RR-GFP plasmids and measured the fluorescence intensity by flow cytometer. In the measurement, we confirmed that GFP under the control of Prhl_RR showed about ???-folds higher in the fluorescence than that of the original Prhl (BBa_R0071) (See results).

However, our Prhl_RR showed significant leak in the absence of C4HSL(See results). In order to lessen the leak and increase the maximum expression level, we newly designed two promoters, Prhl_LR (BBa_K1529310) and Prhl_RL (BBa_K1529300). These promoters have one LuxR binding site and one RhlR binding site. We changed either the upper RhlR binding site of Prhl_RR to Lux binding site (Prhl_LR) or the latter RhlR binding site to Lux binding site (Prhl_RL).

Then, we inserted these promoters to the upstream of GFP coding sequence and measured the fluorescence intensity. Prhl_LR showed higher maximum expression level, but also showed significant leak like Prhl_RR. On the other hand, Prhl_RL had less leak while keeping the high expression level (See results).

 
Fig. 3-4-1. The design of our Rhl promoters
 
 

2. Results

We measured GFP expression with the four different promoters (Prhl (BBa_R0071), Prhl_RR (BBa_K1529320), Prhl_LR (BBa_K1529310) and Prhl_RL (BBa_K1529300)) by flow cytometer. Each promoter was tested in the presence and also in the absence of C4HSL (See Materials and Methods for detailed procedures).

 
Fig. 3-4-2. The four promoters we tested
 

Fig. 3-4-3 shows the fluorescence intensity detected by flow cytometer. Fig. 3-4-4 is the extracted data which shows the comparison of Prhl, Prhl_RR, and Prhl_RL

As Fig 3-4-4 shows, when C4HSL is induced, Prhl_RR showed higher maximum expression level and higher leak than the original Prhl.

   
Fig. 3-4-3. The Fluorescence intensity of the cells
(with positive and negative controls)
Fig. 3-4-4. The fluorescence intensity of the cells with original Prhl (BBa_R0071), Prhl_RR (BBa_K1529320), Prhl_RL (BBa_K1529300)
   
 

3. Materials and methods

3-1. Construction
 
-Strain

All the samples were JM2.300 strain

 
-Plasmids

A. Ptet-RhlR (pSB6A1), Prhl-GFP (pSB3K3)

 

Fig. 3-4-5
 

B. Ptet-RhlR (pSB6A1) Prhl_RR-GFP (pSB3K3)

 
Fig. 3-4-6
 

C. Ptet-RhlR (pSB6A1) Prhl_LR-GFP (pSB3K3)

 
Fig. 3-4-7
 

D. Ptet-RhlR (pSB6A1) Prhl_RL-GFP (pSB3K3)

 
 

E. Ptet-RhlR (pSB6A1) PlacUV5-GFP (pSB3K3) ...Positive control

 
Fig. 3-4-9
 

F. Ptet-RhlR (pSB6A1) promoter less-GFP(pSB3K3) ...Negative control

 
Fig. 3-4-10
 
3-2. Assay Protocol
 

1. Prepare 2 overnight cultures for each samples A~F in 3 mL LB medium, containing ampicillin (50 microg /mL) and kanamycin (30 microg / mL) at 37°C for 12 h.

2. Dilute the overnight cultures to 1 / 100 in fresh LB medium (3 mL) containing ampicillin (50 microg / mL) and kanamycin (30 microg / mL) (→fresh culture). Make glycerol stocks from the remainders.

3. Incubate the fresh cultures in 37°C until the observed OD590 reaches 0.3 (Actual value 0.42).

4. Add 30 microL of 500 microM C4HSL or DMSO as listed below:

A-5 μM: A + C4HSL
A-0 μM: A + DMSO
B-5 μM: B + C4HSL
B-0 μM: B + DMSO
C-5 μM: C + C4HSL
C-0 μM: C + DMSO
D-5 μM: D + C4HSL
D-0 μM: D + DMSO
E-5 μM: E + C4HSL
E-0 μM: E + DMSO
F-5 μM: F + C4HSL
F-0 μM: F + DMSO

5. Incubate the samples at 37°C for 4 h.

6. Start preparing the flow cytometer 1 h before the end of incubation.

7. Take 200 microL of the sample, and centrifuge at 9000 Xg, 1 min, 4°C.

8. Remove the supernatant by using P1000 pipette.

9. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend.

10. Dispense all of each suspension into a disposable tube through a cell strainer.

11. Measure fluorescence intensity with a flow cytometer (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company).

 
 

4. References

[1] “Simpson’s Paradox in a Synthetic Microbial System” John S. Chuang, Olivier Rivoire, Stanislas Leibler 9 JANUARY 2009 VOL 323 SCIENCE