Team:Oxford/how much can we degrade
From 2014.igem.org
(Difference between revisions)
Olivervince (Talk | contribs) |
Olivervince (Talk | contribs) |
||
(41 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
+ | {{Team:Oxford/templates/header}} | ||
+ | |||
<html> | <html> | ||
- | |||
- | |||
- | + | <body> | |
+ | <div class="outer" style="overflow-y: scroll; overflow-x: hidden;"> | ||
- | + | <div id="stuff" style="float:left;position:absolute;margin-left:200px;margin-right:100px; margin-top:50px;min-width:645px;"> | |
- | + | <div id="showwetlab"> | |
- | + | <div id="showmodelling"> | |
- | + | <img src="https://static.igem.org/mediawiki/2014/0/0f/Real_Bioremediation.jpg" style="position:absolute; width:100%;z-index:-1; border-radius:15px;margin-top:-10px;"/> | |
- | + | <div style="background-color:#D9D9D9; opacity:0.7; z-index:5; Height:75px; width:100%;font-size:65px;font-family:Helvetica;padding-top:5px; font-weight: 450;margin-top:10px;"> | |
- | + | <div style="background-color:white; opacity:0.9; Height:75px; width:100%;margin-top:5px:margin-bottom:5px;font-size:65px;font-family:Helvetica;padding-top:5px; color:#00000; font-weight: 450;"><br><center><font style="opacity:0.7">How much can we degrade?</font></center></div> | |
- | + | </div> | |
- | + | <br> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | <div style="border-bottom-left-radius:10px;border-bottom-right-radius:10px; padding-left:10px;padding-right:10px;min-width:300px;"> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | |||
- | |||
- | |||
- | + | <img src="https://static.igem.org/mediawiki/2014/d/d5/Realisation_bioremediation.png" style="width:35%;margin-left:33%;margin-top:-50px;"> | |
- | + | ||
- | + | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | + | </div> | |
- | + | <div style="background-color:white; border-bottom-left-radius:10px;border-radius:10px; padding-left:10px;padding-right:10px;min-width:300px;margin-top:-50px;"> | |
- | + | <a href="https://static.igem.org/mediawiki/2014/3/3d/OxigemLAB_BOOK.pdf" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/50/OxigemLabbook.png" style="position:absolute;width:6%;margin-left:84%;margin-top:-13%;z-index:10;"></a> | |
+ | <a href="https://static.igem.org/mediawiki/2014/1/16/Oxigem_LAB_PROTOCOLS.pdf" target="_blank"><img src="https://static.igem.org/mediawiki/2014/a/a4/OxigemProtocols.png" style="position:absolute;width:6%;margin-left:91%;margin-top:-13%;z-index:10;"></a> | ||
- | + | <div style="position:absolute;background-color:rgba(255,255,255,0.6);border-radius:15px; z-index:5;margin-top:-18.2%; Height:70px; width:20%;font-size:65px;font-family:Helvetica; font-weight: 450;padding-left:10px;padding-right:10px;padding-top:3px;min-width:170px;margin-bottom:3px;"> | |
- | + | ||
- | + | <div style="width:100%;"><font style="font-size:15px;font-weight:500;">Show all:</font></div> | |
- | + | <a href="#showmodelling"><div class="orange_news_block1 showmodelling" style="background: #F9A7B0;border-radius:15px;color:black;float:left;height:40%;width:40%;margin-left:6%;padding-top:10px;"><center> | |
- | + | <h1white><font style="font-size:15px;font-weight:500;">Modelling</font></h1white></center> | |
- | + | </div></a> | |
- | + | ||
- | + | ||
- | + | <a href="#showwetlab"><div class="orange_news_block1 showwetlab" style="background: #ADD8E6;border-radius:15px;color:black;float:left;height:40%;width:40%;margin-left:3%;padding-top:10px;"><center> | |
- | + | <h1white><font style="font-size:15px;font-weight:500;">Wetlab</font></h1white></center> | |
- | + | </div></a> | |
- | + | <br><br><br><br><br> | |
- | + | </div> | |
+ | <br> | ||
+ | <h1>Introduction</h1> | ||
+ | Before we began using synthetic biology to develop a system for bioremediation of chlorinated waste, we thought it was important to work towards an answer to the above question. To do this, we used information from the literature (Gisi et al, 1998) about the metabolism of the native bacterium <font style="font-style: italic;">Methylobacterium extorquens</font> DM4. | ||
+ | <br><br> | ||
+ | We then worked on a model to calculate both the pH change of the system and the volume of DCM degraded over time. This was achieved by using a combination of Michaelis-Menten kinetics, ordinary differential equations and stoichiometric relations. | ||
+ | <br><br> | ||
+ | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
<div class="row"> | <div class="row"> | ||
- | <a href="# | + | <a href="#show1" class="show modelling-row" id="show1"><div class="modelling"> |
- | < | + | <h1white>How much DCM could the native bacterium degrade?</h1white> |
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
</div></a> | </div></a> | ||
- | <a href="# | + | <a href="#hide1" class="hide" id="hide1"><div class="modelling"> |
- | < | + | <h1white>How much DCM could the native bacterium degrade?</h1white></div></a> |
- | </div></a> | + | |
<div class="list"> | <div class="list"> | ||
- | <div class=" | + | <div class="white_news_block2"> |
<h1blue2>Calculating total DCM degraded</h1blue2> | <h1blue2>Calculating total DCM degraded</h1blue2> | ||
<img src="https://static.igem.org/mediawiki/2014/5/5c/Oxford_DCMdeg2.png" style="float:right;position:relative; width:40%;" /> | <img src="https://static.igem.org/mediawiki/2014/5/5c/Oxford_DCMdeg2.png" style="float:right;position:relative; width:40%;" /> | ||
Line 474: | Line 80: | ||
<br><br> | <br><br> | ||
- | <h1>1) Obtaining theoretical growth curve</h1> | + | <h1>1) Obtaining a theoretical growth curve</h1> |
- | To start this calculation, we needed to know how many bacteria we could | + | To start this calculation, we needed to know how many bacteria we could expect to have in our system. To do this, we used the realistic bead dimensions and numbers shown in the Matlab screen shot on the left. This allowed us to calculate the volume of bacteria we predict to be infused the agarose beads. We then used the assumption that the bacteria would grow to an optimum density of 10^7 bacteria per ml of agarose[1] and combined these to give us an approximation of how to scale the growth curve: |
<br><br> | <br><br> | ||
<img src="https://static.igem.org/mediawiki/2014/d/d3/Oxford_DCMdeg3.png" style="float:left;position:relative; width:20%; margin-right:40%;margin-bottom:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/d/d3/Oxford_DCMdeg3.png" style="float:left;position:relative; width:20%; margin-right:40%;margin-bottom:2%;" /> | ||
Line 488: | Line 94: | ||
(what are Gompertz functions?)</a>. An example output growth curve of the model is shown here. | (what are Gompertz functions?)</a>. An example output growth curve of the model is shown here. | ||
<br><br> | <br><br> | ||
- | The scaling of the growth rate of the Gompertz function comes directly from growth curves of the DM4 bacteria that we obtained in the lab. | + | The scaling of the growth rate of the Gompertz function comes directly from growth curves of the DM4 bacteria that we obtained in the lab. |
<br><br> | <br><br> | ||
- | <h1>2) Calculating the volume of DCM that | + | <h1>2) Calculating the volume of DCM that the bacteria can degrade</h1> |
- | Our next task was to model the rate of DCM degradation by | + | Our next task was to model the average rate of DCM degradation by M. extorquens DM4. Using Michaelis-Menten kinetics[2], this was predicted to be: |
<br><br> | <br><br> | ||
Line 498: | Line 104: | ||
<li>d[Ndcm]/dt = rate of DCM molecule degradation (s-1)</li> | <li>d[Ndcm]/dt = rate of DCM molecule degradation (s-1)</li> | ||
- | <li> | + | <li>kcat = dcmA turnover rate (= 0.6 s-1 for DM4)</li> |
<li>[DCM] = DCM concentration (= 0.02M for our system)</li> | <li>[DCM] = DCM concentration (= 0.02M for our system)</li> | ||
- | <li>[DcmA] = Number of DcmA molecules per cell (87576) <a href="https://2014.igem.org/Team:Oxford/what_are_microcompartments?"> | + | <li>[DcmA] = Number of DcmA molecules per cell (87576) <a href="https://2014.igem.org/Team:Oxford/what_are_microcompartments?#hide4"> |
<u>Where did this number come from?</u></a></li> | <u>Where did this number come from?</u></a></li> | ||
<li>Km = Michaelis constant ( = 9 x 10^-6 M for this reaction)</li> | <li>Km = Michaelis constant ( = 9 x 10^-6 M for this reaction)</li> | ||
Line 506: | Line 112: | ||
- | Through the use of diffusion-limiting beads, [DCM] is kept constant at 0.02M. This is significantly larger than our Michaelis constant so this equation can be simplified by using the following assumptions: | + | Through the use of diffusion-limiting beads, [DCM] is kept constant at 0.02M. This is significantly larger than our Michaelis constant, so this equation can be simplified by using the following assumptions: |
<br><br> | <br><br> | ||
<img src="https://static.igem.org/mediawiki/2014/7/76/Oxford_DCMdeg5.png" style="float:left;position:relative; width:40%; margin-right:75%;margin-bottom:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/7/76/Oxford_DCMdeg5.png" style="float:left;position:relative; width:40%; margin-right:75%;margin-bottom:2%;" /> | ||
Line 512: | Line 118: | ||
- | Multiplying this by our population function, the total rate of DCM | + | Multiplying this by our population function, the total rate of DCM degradation is given as: |
<br><br> | <br><br> | ||
Line 533: | Line 139: | ||
<img src="https://static.igem.org/mediawiki/2014/5/5c/Oxford_DCMdeg9.png" style="float:left;position:relative; width:60%; margin-left:20%; margin-right:20%;margin-bottom:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/5/5c/Oxford_DCMdeg9.png" style="float:left;position:relative; width:60%; margin-left:20%; margin-right:20%;margin-bottom:2%;" /> | ||
- | <h1> | + | <h1>References:</h1> |
- | + | <ol style="margin-left:20px;"> | |
+ | <li>(Dr George Wadhams, personal communication, August 4, 2014)</li> | ||
+ | <li>Michaelis L. and Menten M.L. Kinetik der Invertinwirkung Biochem. Z. 1913; 49:333–369 English translation Accessed 6 April 2007</li> | ||
+ | </ol | ||
<br><br> | <br><br> | ||
Line 541: | Line 150: | ||
</div> | </div> | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Line 566: | Line 166: | ||
<div class="row"> | <div class="row"> | ||
- | <a href="# | + | <a href="#show2" class="show modelling-row" id="show2"><div class="modelling"> |
- | < | + | <h1white>How much would the pH change by?</h1white> |
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
</div></a> | </div></a> | ||
- | <a href="# | + | <a href="#hide2" class="hide" id="hide2"><div class="modelling"> |
- | < | + | <h1white>How much would the pH change by?</h1white></div></a> |
- | </div></a> | + | |
<div class="list"> | <div class="list"> | ||
- | <div class=" | + | <div class="white_news_block2"> |
<h1blue2>Calculating the pH change</h1blue2> | <h1blue2>Calculating the pH change</h1blue2> | ||
<br><br> | <br><br> | ||
Line 583: | Line 182: | ||
- | There is a resulting pH change | + | There is a resulting pH change because of the accumulation of HCl. Because we are dealing with an organic system which cannot tolerate pH<6, we must track the anticipated HCl production and resulting pH change. |
The following relationships were used: | The following relationships were used: | ||
Line 613: | Line 212: | ||
<div class="white_news_block"> | <div class="white_news_block"> | ||
<h1>Summary:</h1> | <h1>Summary:</h1> | ||
- | As you can see from the above graph, the native | + | As you can see from the above graph, the native bacterium M. extorquens DM4 will not be able to degrade a large volume of DCM. It will therefore not be a suitable to dispose of chlorinated waste efficiently. There are several reasons for this, including: |
<br><br> | <br><br> | ||
- | <li>The degradation of DCM is a stress response for | + | <li>The degradation of DCM is a stress response for M. extorquens DM4. Therefore, when metabolising DCM, it is also up-regulating stress response molecules such as repair enzymes, which is an additional strain on cellular metabolism. </li> |
- | <li> | + | <li>M. extorquens DM4 has a doubling rate of 8-9 hours, so it takes 2 weeks to grow up a colony. Additionally, they proved very difficult to grow in the lab, both on standard growth agars and specialised nutrient agars.</li> |
- | + | <li>M. extorquens DM4 are not yet well-understood bacteria, particularly with respect to their metabolism.</li> | |
- | <li>DM4 are not | + | |
<br><br> | <br><br> | ||
However, using synthetic biology, we can dramatically increase the amount of chlorinated solvents that certain bacteria can degrade. This is because: | However, using synthetic biology, we can dramatically increase the amount of chlorinated solvents that certain bacteria can degrade. This is because: | ||
<br><br> | <br><br> | ||
- | <li>We will | + | <li>We will use E. coli and P. putida in order to break down DCM. The advantage is that these are extremely well-characterised bacteria that are easy to grow in the lab. </li> |
- | <li> | + | <li>We are expressing microcompartments in both E. coli and P. putida, which prevent toxic intermediates of DCM metabolism from damaging the cells. This is necessary because unlike M. extorquens DM4, E. coli and P. putida have not evolved for the degradation of DCM and toxic intermediates released during its metabolism</li> |
- | <li> | + | <li>We will upregulate and express formaldehyde dehydrogenase in P. putida and E. coli, respectively. This will help the cells deal with formaldehyde, which is a genotoxic intermediate produced in the degradation of DCM.</li> |
<br><br> | <br><br> | ||
- | This model proves the power of computer modelling and shows the importance of using synthetic biology to solve global problems. The exact amount | + | This model proves the power of computer modelling and shows the importance of using synthetic biology to solve global problems. The exact amount of DCM that could be degraded depends largely on input conditions, such as the number of beads. While more beads in the system allow more rapid DCM removal, a very large system can provide challenging to construct and monitor. |
<a href="https://2014.igem.org/Team:Oxford/biopolymer_containment">(What do we mean by beads?)</a> | <a href="https://2014.igem.org/Team:Oxford/biopolymer_containment">(What do we mean by beads?)</a> | ||
Line 633: | Line 231: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
Line 662: | Line 268: | ||
<div class="row"> | <div class="row"> | ||
- | <a href="# | + | <a href="#show3" class="show modelling-row" id="show3"><div class="modelling"> |
- | < | + | <h1white>What is a Gompertz function?</h1white> |
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
</div></a> | </div></a> | ||
- | <a href="# | + | <a href="#hide3" class="hide" id="hide3"><div class="modelling"> |
- | < | + | <h1white>What is a Gompertz function?</h1white></div></a> |
- | </div></a> | + | |
<div class="list"> | <div class="list"> | ||
- | + | <div class="white_news_block2"> | |
<h1blue2>Gompertz Functions</h1blue2> | <h1blue2>Gompertz Functions</h1blue2> | ||
<br><br> | <br><br> | ||
- | We used a variation of a sigmoid function called a Gompertz function to model the theoretical growth of our bead-encapsulated | + | We used a variation of a sigmoid function called a Gompertz function to model the theoretical growth of our bead-encapsulated bacteria. These functions are well-established[1] as a method of predicting population growth in a confined space, which will be the case if we encapsulate them in agarose beads. Growth rates follow a sigmoidal curve, where they first increase and then slow because of limited resources and population density. We assumed that the population of bacteria over time will follow one of these functions (when scaled correctly). |
<br><br> | <br><br> | ||
Gompertz functions are of the form: | Gompertz functions are of the form: | ||
Line 690: | Line 295: | ||
<br><br> | <br><br> | ||
- | Using this theoretical form, we could then calibrate the values of our variables through comparison with actual growth curve data from wet lab experiments. This was an important step because it | + | Using this theoretical form, we could then calibrate the values of our variables through comparison with actual growth curve data from wet lab experiments. This was an important step because it then allowed us to calculate the total theoretical degradation rate of DCM that our kit can support. |
<br><br> | <br><br> | ||
Varying each of the three constants allows us to fit our Gompertz function to the actual growth data. The effect of varying each constant is shown below: | Varying each of the three constants allows us to fit our Gompertz function to the actual growth data. The effect of varying each constant is shown below: | ||
Line 704: | Line 309: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | |||
Line 728: | Line 335: | ||
<div class="row"> | <div class="row"> | ||
- | <a href="# | + | <a href="#show4" class="show modelling-row" id="show4"><div class="modelling"> |
- | < | + | <h1white>How can we reduce the drop in pH?</h1white> |
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
</div></a> | </div></a> | ||
- | <a href="# | + | <a href="#hide4" class="hide" id="hide4"><div class="modelling"> |
- | < | + | <h1white>How can we reduce the drop in pH?</h1white></div></a> |
- | </div></a> | + | |
<div class="list"> | <div class="list"> | ||
- | <div class=" | + | <div class="white_news_block2"> |
<h1blue2>Using buffers to reduce the pH change of our system</h1blue2> | <h1blue2>Using buffers to reduce the pH change of our system</h1blue2> | ||
- | + | <br><br> | |
- | + | We have investigated the effect of using buffers in the aqueous part of our system.<br> | |
+ | As a first approximation, we model our system of bacteria turning over DCM, producing HCl, as a chemical system in which HCl immediately enters the 'bulk' (extracellular) solution; in this system we have a single buffer (HEPES) to reduce the drop in pH, maximising the amount of DCM the entire system can degrade before the pH drops below a toxic level. | ||
<br><br> | <br><br> | ||
- | + | Derivation of the Van Slyke equation: | |
<br><br> | <br><br> | ||
- | + | To simplify calculations, assumptions that HCl completely dissociates, and that the system volume = 1L (allowing concentration and number of moles to be treated interchangeably) are made. | |
<br><br> | <br><br> | ||
- | < | + | Electro-neutrality condition for a system of two substances, HA and BOH: <h1>(1.1)</h1> |
- | + | <img src="https://static.igem.org/mediawiki/2014/1/1c/Oxford_Jack_eqn1.png" style="float:left;position:relative; width:40%; margin-left:0%; margin-right:60%;margin-bottom:2%;" /> | |
<br><br> | <br><br> | ||
- | + | Total concentration of buffer: <h1>(1.2)</h1> | |
- | + | ||
- | + | ||
- | + | ||
- | < | + | |
- | + | ||
- | + | ||
+ | <img src="https://static.igem.org/mediawiki/2014/1/13/Oxford_Jack_eqn2.png" style="float:left;position:relative; width:27%; margin-left:0%; margin-right:73%;margin-bottom:2%;" /> | ||
+ | By definition: <h1>(1.3)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/1/1f/Oxford_Jack_eqn3.png" style="float:left;position:relative; width:27%; margin-left:0%; margin-right:73%;margin-bottom:2%;" /> | ||
+ | Combining (1.2) and (1.3): <h1>(1.4)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/6/6a/Oxford_Jack_eqn4.png" style="float:left;position:relative; width:27%; margin-left:0%; margin-right:73%;margin-bottom:2%;" /> | ||
+ | Combining this with (1.1) and the water auto-ionisation constant definition, K_W=[H^+ ][〖OH〗^-], give the moles of strong acid added: <h1>(1.5)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/8/8b/Oxford_Jack_eqn5.png" style="float:left;position:relative; width:40%; margin-left:0%; margin-right:60%;margin-bottom:2%;" /> | ||
+ | Differentiating with respect to the pH gives the buffer capacity: <h1>(1.6)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/e/e4/Oxford_Jack_eqn6.png" style="float:left;position:relative; width:40%; margin-left:0%; margin-right:60%;margin-bottom:2%;" /> | ||
+ | <h1>(1.7)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/c/c0/Oxford_Jack_eqn7.png" style="float:left;position:relative; width:50%; margin-left:0%; margin-right:50%;margin-bottom:2%;" /> | ||
+ | <h1>(1.8)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/a/a5/Oxford_Jack_eqn8.png" style="float:left;position:relative; width:50%; margin-left:0%; margin-right:50%;margin-bottom:2%;" /> | ||
+ | Which can be generalized for multi-buffer systems: <h1>(1.9) Van Slyke equation</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/6/61/Oxford_Jack_eqn9.png" style="float:left;position:relative; width:50%; margin-left:0%; margin-right:50%;margin-bottom:2%;" /> | ||
+ | <li>β = buffer capacity</li> | ||
+ | <li>n = number of equivalents of strong acid added (per L solution) – we have this as a function of t: approximately addition at a constant rate.</li> | ||
+ | <li>K_(A_i) = K_A of component buffer i</li> | ||
+ | <li>K_W = ionic product of water, 10^(-14)</li> | ||
+ | <li>C_i = concentration of component buffer i</li> | ||
+ | <br><br> | ||
+ | Taking the reciprocal, and substituting the definition: <h1>(1.10)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/7/7b/Oxford_Jack_eqn10.png" style="float:left;position:relative; width:15%; margin-left:0%; margin-right:85%;margin-bottom:2%;" /> | ||
+ | gives: <h1>(1.11)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/e/e2/Oxford_Jack_eqn11.png" style="float:left;position:relative; width:50%; margin-left:0%; margin-right:50%;margin-bottom:2%;" /> | ||
+ | <h1>(1.12)</h1> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/d/d8/Oxford_Jack_eqn12.png" style="float:left;position:relative; width:50%; margin-left:0%; margin-right:50%;margin-bottom:2%;" /> | ||
+ | For a single buffer system: | ||
+ | <br><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/8/82/Oxford_Jack_eqn13.png" style="float:left;position:relative; width:25%; margin-left:0%; margin-right:75%;margin-bottom:2%;" /> | ||
+ | Numerically solving this ODE in MATLAB, for pH(n, C) and hence pH(t, C) gives: | ||
+ | Upon solving the equation in Matlab, it was clear that only a relatively low concentration (0.05 M) of buffer was needed to significantly reduce the pH change of the solution: | ||
+ | <br><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/5/5c/Oxford_DCMdeg17.jpg" style="float:left;position:relative; width:100%; margin-left:0%; margin-right:0%;margin-bottom:2%;" /> | ||
- | + | The numerical solution to this differential equation was confirmed by reducing the n interval by a factor of 100, which gave the same result. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<br><br> | <br><br> | ||
- | + | Derivation shown is based on Adam Hulanicki book Reakcje kwasów i zasad w chemii analitycznej, 2nd ed., PWN, Warszawa 1980 (English edition: Reactions of acids and bases in analytical chemistry; Chichester, West Sussex, England: E. Horwood; New York: Halsted Press, 1987). | |
- | + | ||
- | + | ||
<br><br> | <br><br> | ||
- | + | Another possibility of reducing the overall pH change is adding a lot more water to the system. This is the easier method and could be used for single-use DCM disposal kits. However, it is impractical in large scale applications because of the very large amount of water that would have to be added. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</div> | </div> | ||
Line 821: | Line 437: | ||
+ | <div class="row"> | ||
+ | <a href="#show5" class="show modelling-row" id="show5"><div class="modelling"> | ||
+ | <h1white>How does the amount of water added affect the output?</h1white> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
+ | </div></a> | ||
+ | <a href="#hide5" class="hide" id="hide5"><div class="modelling"> | ||
+ | <h1white>How does the amount of water added affect the output?</h1white></div></a> | ||
+ | <div class="list"> | ||
+ | <div class="white_news_block2"> | ||
+ | <h1blue2>Calculating the pH change</h1blue2> | ||
+ | <br><br> | ||
+ | We then used our model to predict the effect on the system if you simply increase the amount of water in the aqueous layer. | ||
+ | This shows how much water is necessary to prevent the pH from dropping too much. It demonstrates why addition of a buffer is the more reasonable choice to control the pH of the system. | ||
+ | <br><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/6/6c/Oxford_DCMdeg18.png" style="float:left;position:relative; width:60%; margin-left:20%; margin-right:20%;margin-bottom:2%;" /> | ||
+ | The graph here is for non specific inputs and is for demonstration purposes only. It shows well how the model responds to changing the input values. | ||
+ | <br><br> | ||
+ | <u></u> | ||
+ | |||
+ | <a href="https://2014.igem.org/Team:Oxford/how_much_can_we_degrade#hide4">Buffers? | ||
+ | </a> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
Line 835: | Line 476: | ||
<div class="row"> | <div class="row"> | ||
- | <a href="# | + | <a href="#show6" class="show modelling-row" id="show6"><div class="modelling"> |
- | < | + | <h1white>How does the kcat of the system affect the output?</h1white> |
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
</div></a> | </div></a> | ||
- | <a href="# | + | <a href="#hide6" class="hide" id="hide6"><div class="modelling"> |
- | < | + | <h1white>How does the kcat of the system affect the output?</h1white></div></a> |
- | </div></a> | + | |
<div class="list"> | <div class="list"> | ||
- | + | <div class="white_news_block2"> | |
- | The apparent uni-molecular rate | + | The apparent uni-molecular rate constant kcat, also called the turnover number, denotes the maximum number of enzymatic reactions catalysed per second. |
<br><br> | <br><br> | ||
- | We used our model to predict | + | We used our model to predict the response of the system to a change in the kcat value of the DCM degradation enzyme, dcmA. |
- | + | Increasing the value of kcat by a significant amount is unrealistic in the length of our project. However, in future work, the kcat could potentially be substantially improved. | |
<br><br> | <br><br> | ||
- | In the graph shown here, the total volume degraded | + | In the graph shown here, the total volume degraded doesn't change. This is because the amount of HCl that the system requires to reach a toxic pH level is constant, as we are not varying the volume of the aqueous layer. To increase the total amount of DCM degraded, we simply need to add more water or a pH buffer to the system. |
- | However, increasing the kcat | + | However, increasing the kcat value dramatically increases the rate of the degradation. This hints towards a valid future area of research. |
<br><br> | <br><br> | ||
<img src="https://static.igem.org/mediawiki/2014/b/b2/Oxford_DCMdeg19.png" style="float:left;position:relative; width:60%; margin-left:20%; margin-right:20%;margin-bottom:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/b/b2/Oxford_DCMdeg19.png" style="float:left;position:relative; width:60%; margin-left:20%; margin-right:20%;margin-bottom:2%;" /> | ||
Line 860: | Line 500: | ||
</div> | </div> | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Line 889: | Line 509: | ||
<div class="row"> | <div class="row"> | ||
- | <a href="# | + | <a href="#show7" class="show modelling-row" id="show7"><div class="modelling"> |
- | < | + | <h1white>Potential benefits?</h1white> |
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
</div></a> | </div></a> | ||
- | <a href="# | + | <a href="#hide7" class="hide" id="hide7"><div class="modelling"> |
- | < | + | <h1white>Potential benefits?</h1white></div></a> |
- | </div></a> | + | |
<div class="list"> | <div class="list"> | ||
- | + | <div class="white_news_block2"> | |
- | Increasing the kcat | + | Increasing the kcat of the enzyme greatly improve our system, as you can see in the models shown above. |
<br><br> | <br><br> | ||
- | + | By simple adjustment of input parameters, our model could be adapted to simulate the degradation of other types of toxic compounds in other bacteria with different enzymes. This modelling technique is therefore particularly powerful, because if you know certain parameters about the system, you can simulate how much of a particular product can be produced by a bacterial system. | |
<br><br> | <br><br> | ||
- | More broadly, the potential benefit of months of synthetic biology research could be analysed | + | More broadly, the potential benefit of months of synthetic biology research could be analysed within a few hours using this model, as long as the relevant parameters are roughly known. |
<br><br> | <br><br> | ||
- | To demonstrate what we mean by this, here are some other processes with different kcat | + | To demonstrate what we mean by this, here are some other processes with different kcat values[1]: |
<br><br> | <br><br> | ||
Line 914: | Line 533: | ||
- | As you can see, | + | As you can see, using systems with the parameters shown above would increase the amount of product obtained from the same number of bacteria by orders of magnitude and would therefore be highly beneficial to a bioremediation system. |
Future work could definitely involve modelling these reactions and investigating the potential benefits before the wet lab work begins. | Future work could definitely involve modelling these reactions and investigating the potential benefits before the wet lab work begins. | ||
<br><br> | <br><br> | ||
Line 923: | Line 542: | ||
</div> | </div> | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Line 951: | Line 550: | ||
<div class="row"> | <div class="row"> | ||
- | <a href="# | + | <a href="#show8" class="show modelling-row" id="show8"><div class="modelling"> |
- | < | + | <h1white>How can we use the pH drop?</h1white> |
<img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/4/4d/Oxford_plus-sign-clip-art.png" style="float:right;position:relative; width:2%;" /> | ||
</div></a> | </div></a> | ||
- | <a href="# | + | <a href="#hide8" class="hide" id="hide8"><div class="modelling"> |
- | < | + | <h1white>How can we use the pH drop?</h1white></div></a> |
- | </div></a> | + | |
<div class="list"> | <div class="list"> | ||
- | + | <div class="white_news_block2"> | |
<h1blue2>How could we measure the pH?</h1blue2> | <h1blue2>How could we measure the pH?</h1blue2> | ||
<img src="https://static.igem.org/mediawiki/2014/8/81/Oxford_DCMdeg21.png" style="float:right;position:relative; width:40%; margin-left:0%; margin-right:0%;margin-bottom:2%;" /> | <img src="https://static.igem.org/mediawiki/2014/8/81/Oxford_DCMdeg21.png" style="float:right;position:relative; width:40%; margin-left:0%; margin-right:0%;margin-bottom:2%;" /> | ||
Line 967: | Line 565: | ||
<br><br> | <br><br> | ||
- | As we’ve built the model predicting the pH change very accurately, we have been thinking about how to use this | + | As we’ve built the model predicting the pH change very accurately, we have been thinking about how to use this system change to our advantage. There are two viable options that we’ve considered. |
<br><br> | <br><br> | ||
- | By using a pH indicator that changes colour at a pH of around 6, we could use the same electronics that we’ve developed for detecting the fluorescence of the sfGFP in the biosensor to detect the colour change, and therefore the point at which the pH becomes dangerously low. This has the advantage of making the biosensor very user friendly | + | By using a pH indicator that changes colour at a pH of around 6, we could use the same electronics that we’ve developed for detecting the fluorescence of the sfGFP in the biosensor to detect the colour change, and therefore the point at which the pH becomes dangerously low. This has the advantage of making the biosensor very user friendly while keeping the system cheap. |
- | The other option is to use a commercially available digital pH meter to signal a warning when the pH gets too low. This | + | The other option is to use a commercially available digital pH meter to signal a warning when the pH gets too low. This could require occasional maintenance of the pH sensor, but would have the advantage of being more accurate. |
<br><br> | <br><br> | ||
<h1blue2>How is the pH useful?</h1blue2> | <h1blue2>How is the pH useful?</h1blue2> | ||
<br><br> | <br><br> | ||
- | The pH is an indirect measure of the amount of DCM that we’ve degraded. It is | + | The pH in our system is an indirect measure of the amount of DCM that we’ve degraded. It is therefore possible to calculate the required amount of water that has to be added to a certain amount of DCM to ensure the pH remains neutral. If no buffer solution is added, initial calculations (see the graph) indicate that there is a very big difference between the relative volumes of the amount of DCM added and the volume of the aqueous layer. This highlights the importance of using a pH buffer solution in the aqueous layer. |
<br><br> | <br><br> | ||
- | Therefore, the system that detects the amount of DCM that we’ve degraded could link the digital pH read out to the initial amount of water added. | + | Therefore, the system that detects the amount of DCM that we’ve degraded could link the digital pH read-out to the initial amount of water added. |
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Line 1,040: | Line 596: | ||
<div class="white_news_block"> | <div class="white_news_block"> | ||
- | |||
- | |||
<img src="https://static.igem.org/mediawiki/2014/7/76/Oxford_Micro_title.png" style="float:right;position:relative; width:48%;" /> | <img src="https://static.igem.org/mediawiki/2014/7/76/Oxford_Micro_title.png" style="float:right;position:relative; width:48%;" /> | ||
Line 1,070: | Line 624: | ||
Oxford iGEM 2014 | Oxford iGEM 2014 | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | + | <br> | |
+ | </div> | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
</body> | </body> | ||
</html> | </html> | ||
+ | |||
+ | {{Team:Oxford/templates/footer}} |
Latest revision as of 09:55, 15 January 2015