Team:Oxford/what are microcompartments

From 2014.igem.org

(Difference between revisions)
Line 568: Line 568:
<br><br>
<br><br>
Due to the complexity of the enzyme movements and their interactions, I simplified their structures by approximating them as ellipsoids with axes lengths calculated through modelling the monomers and predicting the structures of the FdhA tetramer and DcmA hexamer respectively.
Due to the complexity of the enzyme movements and their interactions, I simplified their structures by approximating them as ellipsoids with axes lengths calculated through modelling the monomers and predicting the structures of the FdhA tetramer and DcmA hexamer respectively.
-
 
+
<br><br>
<img src="https://static.igem.org/mediawiki/2014/1/12/Oxford_Leroy_pic1.png" style="float:left;position:relative; width:100%;" />
<img src="https://static.igem.org/mediawiki/2014/1/12/Oxford_Leroy_pic1.png" style="float:left;position:relative; width:100%;" />
-
<br><br>
+
<br><br><br><br>
Oxford iGEM 2014
Oxford iGEM 2014
</div>
</div>

Revision as of 13:22, 19 September 2014

#list li { list-style-image: url("https://static.igem.org/mediawiki/2014/6/6f/OxigemTick.png"); } }


What are micro-compartments?


Introduction

BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES BIOREMEDIATION INTRODUCTION PLUS QUOTES
Structure
Structure
Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information
Mutated micro-compartment structures model
Mutated micro-compartment structures model
Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information
Abundance
Abundance
Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information
Modelling the number of enzymes in a micro-compartment
Modelling the number of enzymes in a micro-compartment
The aim of this model was to predict a theoretical maximum number of enzyme molecules that can be packed into a single microcompartment. To get a first estimate, without taking into consideration whether this volume of protein would interrupt the biological processes in the cell, we approached this problem volumetrically.

Due to the complexity of the enzyme movements and their interactions, I simplified their structures by approximating them as ellipsoids with axes lengths calculated through modelling the monomers and predicting the structures of the FdhA tetramer and DcmA hexamer respectively.





Oxford iGEM 2014