Team:UESTC-China/Design

From 2014.igem.org

(Difference between revisions)
Line 496: Line 496:
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
<br/>
<br/>
-
The ribulose monophosphate (RuMP) pathway is one of the HCHO-fixation pathways found in microorganisms called methylotrophs, which utilize one-carbon compounds as the sole carbon source. The key enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS), which fixes HCHO to D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose 6-phosphate (Hu6P), and 6-phospho-3- hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P).The two key enzymes work in chloroplast both.We will use fusion expression to conduct heterologous expression in tobacco ( Li-mei Chen et al,2010). Here are some datas from the paper.  
+
The ribulose monophosphate (RuMP) pathway is one of the HCHO-fixation pathways found in microorganisms called methylotrophs, which utilize one-carbon compounds as the sole carbon source. The key enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS), which fixes HCHO to D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose 6-phosphate (Hu6P), and 6-phospho-3- hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P).The two key enzymes work in chloroplast both.We will use fusion expression to conduct heterologous expression in tobacco <i>( Li-mei Chen et al,2010)</i>. Here are some datas from the paper.  
<br/><br/></p>
<br/><br/></p>
<div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/3/3f/Regu1.png" naptha_cursor="text">
<div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/3/3f/Regu1.png" naptha_cursor="text">

Revision as of 10:12, 17 October 2014

UESTC-China