Team:UESTC-China/BioBrick

From 2014.igem.org

(Difference between revisions)
Line 536: Line 536:
<h2>AHA2 <a href="http://parts.igem.org/Part:BBa_K1537028"> (<u>BBa_K1537028</u>) </a></h2>
<h2>AHA2 <a href="http://parts.igem.org/Part:BBa_K1537028"> (<u>BBa_K1537028</u>) </a></h2>
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
-
Stomata are microscopic pores surrounded by two guard cells and play an important role in the uptake of CO2 for photosynthesis. Recent researches revealed that light-induced stomatalopening is mediated by at least three key components:blue light receptor phototropin, plasma membrane H+-ATPase, and plasma membrane inward-rectifying K+ channels. However, Yin Wang, et al, showed that only increasing the amount of H+-ATPase in guard cells had a significant effect on light-induced stomatal opening. Transgenic Arabidopsis plants by overexpressing H+-ATPase in guard cells exhibited enhanced photosynthesis activity and plantgrowth. Therefore, in order to improve the ability of absorbingformaldehyde, we overexpresse H+-ATPase (At AHA2) in transgenic tobacco guard cells , resulting in a significant effect on light-induced stomatal opening.
+
Stomata are microscopic pores surrounded by two guard cells and play an important role in the uptake of CO2 for photosynthesis. Recent researches revealed that light-induced stomatal opening is mediated by at least three key components:blue light receptor phototropin, plasma membrane H+-ATPase, and plasma membrane inward-rectifying K+ channels. However, Yin Wang, et al, showed that only increasing the amount of H+-ATPase in guard cells had a significant effect on light-induced stomatal opening. Transgenic Arabidopsis plants by overexpressing H+-ATPase in guard cells exhibited enhanced photosynthesis activity and plantgrowth. Therefore, in order to improve the ability of absorbingformaldehyde, we overexpresse H+-ATPase (At AHA2) in transgenic tobacco guard cells , resulting in a significant effect on light-induced stomatal opening.

Revision as of 10:37, 17 October 2014

UESTC-China