Team:ETH Zurich/modeling/whole

From 2014.igem.org

(Difference between revisions)
(With Leakiness)
(With Leakiness)
Line 265: Line 265:
-
The figure above summarises the predicted effect of basal leakiness on the flipping of the terminator. The basal leakiness results in production of Bxb1 and ΦC31 which result in flipping of the terminator. In this case, since the cell produces LasI there is increased production of LasAHL. The LasAHL produced induces the production of ΦC31 which further causes flipping of all terminators flanked by the ΦC31 sites. Thus, by 200 minutes almost all ΦC31 sites are inactive and the cell will stay ON.  
+
<!--The figure above summarises the predicted effect of basal leakiness on the flipping of the terminator. The basal leakiness results in production of Bxb1 and ΦC31 which result in flipping of the terminator. In this case, since the cell produces LasI there is increased production of LasAHL. The LasAHL produced induces the production of ΦC31 which further causes flipping of all terminators flanked by the ΦC31 sites. Thus, by 200 minutes almost all ΦC31 sites are inactive and the cell will stay ON. -->
-
However, if we measure the fluorescence at around 150 mins, we observe a good and acceptable XOR behaviour. Therefore, one of the solutions we propose is to kill or freeze the cells in each row after 3 hours.  
+
However, if we measure the fluorescence at around 300 mins, we observe a good and acceptable XOR behaviour. Therefore, one of the solutions we propose is to kill or freeze the cells in each row after 3 hours.  
<!-- Alternatively, we propose a modified construct, where production of LasI is regulated by a weaker promoter and is induced by a protein, whose production is coupled with production of GFP. -->
<!-- Alternatively, we propose a modified construct, where production of LasI is regulated by a weaker promoter and is induced by a protein, whose production is coupled with production of GFP. -->

Revision as of 23:53, 14 October 2014

iGEM ETH Zurich 2014