Team:Aachen/Safety

From 2014.igem.org

Revision as of 03:51, 18 October 2014 by R.hanke (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Aachen 14-10-13 Pathogen Cell iNB.png

Safety

Our iGEM team is committed to consider all aspects of the entire project, especially biosafety. For this project, two biosafety aspects have to be covered. On the one hand, we are using E. coli as genetically modified organism, and on the other hand, we are detecting Pseudomonas aeruginosa, an opportunistic human pathogen. It infects people suffering from cystic fibrosis or immunodeficiency as well as severe burns or open wounds. When sampling P. aeruginosa, we should prevent proliferation and spread of the bacterium. For E. coli, we have to take care of biological containment of a genetically modified organism.

In general, we developed and designed the measurement device as closed system for a better safety handling. This way, neither the sampled pathogens nor the genetically modified sensor cells can escape our biosensor unit. For the detection, we are using one-time usage sampling and sensor chips which can be disposed of after autoclaving or irradation with strong UV light. Moreover, the electronic components are in a separate compartment and inaccessible for the user, preventing electric shock or other injuries.

Aachen Security WatsOn.png
Biosafety level for WatsOn
Don't forget to use WatsOn only in laboratoris with the biosafty standard 1

To detect P. aeruginosa, a sampling agar chip is slightly pressed against the solid surface to be tested. This sampling chip is put on the sensor chip and both are placed in a petri dish which is closed thoroughly. Thereby, the cells have no contact with the device during or after the measurement. However, the sensor chips must be handled in S1 environments only since they contain genetically modified E. coli. Afterwards, both chips can be autoclaved and disposed. The whole lining of the measurement device is built from plastic so that it can be disinfected easily.

To simulate the worst case scenario, we did replica plating of some exemplary sensor chips. In three experiments, we got an arithmetic mean of five colonies which were picked up. From that we concluded that the risk of infection is really low even if the measurement device and chips are not handled properly.

For further analysis of our project from a safety perspective, please view our safety form.