Team:Aachen/OD/F device

From 2014.igem.org

Revision as of 19:23, 15 October 2014 by Nbailly (Talk | contribs)

OD/F device

Measuring Optical Density (OD) is a central element in microbiological work and synthetic biology. One question that has to be answered often is how many cells are in a suspension. Here, the OD can give you a hint. Unfortunately, commercially available OD meters cost several hundred dollars ([http://www.laboratory-equipment.com/laboratory-equipment/cell-density-meter.php OD meter]), and can limit the spread of synthetic biology.

Therefore, we wanted to devenlop an alternative for measuring OD, specifically designed for Biohackspaces, DIY and community laboratories and schools. With our OD/F device, we want to enable many people to do good, precise and inexpensive science research.

Especially for the Interlab Study fluorescence, too, has been of importance. One aim of this study was to measure the correlation between OD and fluorescence. Since the taks of measuring OD and fluorescence are often performed at the same time, we want to present a device that can measure both fluorescence and OD with just some easy adjustments. This way, we can measure how much fluorescence there is per amount of cells.

In fact, you can find some DIY posts for turbidity meters such as [http://www.thingiverse.com/thing:74415 turbidity sensors]. However, a proper assessment of their linearity as well as a calculated OD-value are missing.

Regarding fluorescence, we are of course not re-inventing the wheel (well, not totally). The 2010 iGEM Cambridge team actually built a very similar device, the E.glometer. However, there's no data available showing an actual comparison of the data from their device and some proven commercial system to, for example, assess linearity of the measurement.


Measuring Principle

The measuring principle for both optical density (OD) and fluorescence measurement is depicted below. For OD measurement we shine through the sample with an LED and a fixed width. A filter blocks any other light but 600 nm. This way, the sensor mainly senses the 600 nm light which is needed for OD600 measurement.

For fluorescence measurement a similar approach is chosen. The filter again is used to block the exciting light from being sensed. That way only the emitted light from the fluorescence protein is measured.

Aachen odf schemes.png
Measuring principle for OD/F device
The left image shows the measurement approach for the optical density. The light shines through the sample with a fixed width. The right image shows the fluorescence measurement approach, exciting the fluorescence proteins from below and measuring from the side.

Further details about selecting filters, code, a construction manual and evaluation can be found here.


Cuvette Holder for optical density and fluorescence measurement.

Application

Using the presented device is easy and works as with any other device, too. First you will have to take a blank reference, e.g. pure medium without cells. After placing the cuvette in the device, press the red button to take the blank and take out your blank again. In the following do all your measurements which you would like to do compared to your medium. Again, take the cuvette, fill it with the sample and put it into the device. The measured value will be displayed on the device. Do not press the red button again until you want to take another blank/reference.

Aachen 14-10-09 Flowsheet OD-device ipo.png
How to use our OD/F device

Aachen 14-10-15 Medal Cellocks iNB.png

Achievements

When building the OD/F Device, our goals were to develop a system that

  • is straightforward to use
  • is at least as accurate as commercially available systems but at the same time costs significantly less
  • produces stable, reproducible results
  • uses widely available parts and is easy to build
  • can measured both optical density and fluorescence

Commercially available equipment uses lasers and a set of two fine filters, one between laser and sample and one between sample and sensor. To beat down the price, our OD/F Device uses a simpler measuring principle: It has just one rather low-quality filter, between sample and sensor, and illuminates with an LED instead of a laser. On the one hand, the LED is not as accurate as a laser and has a non-optimal spectrum. On top of that, due to the missing filter between laser and sample, stray light might influence the measurement. On the other hand, one goal was to produce an inexpensive device. Given that we therefore had to compromise some of the measurement quality, we still were able to produce stable, precise and good data.