Team:UCL/Humans/Soci/10
From 2014.igem.org
Sociological Imaginations - Reconciling Environmental Discourses
Policy & Practices Team
Conceptual Framework: The Governance Challenges of Synthetic Biology | Theoretical Framework: Opposing Paradigms in the Face of Environmental Decline
Chapter 1: Synthetic Biology for Environmental Reform | Chapter 2: UCL iGEM 2014 in the Risk Society | Chapter 3: Transcending Multifaceted Borders
Chapter 4: The Playful Professional and Sustainable Governance | Conclusion | List of References
Conclusion
The advent of emerging technologies, at a time when environmental deterioration creeps up on the edges of modern society, has led to a crumbling of the certainties in power and knowledge that the institutions of modernity use to be able to provide. From the premise of technological optimism, these technologies are strategically employed in order to ‘outsmart’ any ecological setback as long as our societal framework adopts the necessary environmental reforms. The promise revolutionary change that synthetic biology brings, thus falls into that same category, and aims to recalibrate the reductionist logic of modern industrial practices. However, in trying to erase the measurable risks of such a classical industrial hazard like toxic textile dye effluents, the Goodbye AzoDye project of UCL iGEM 2014 also needs to take into account that its cutting-edge scientific performance potentially necessitates an even greater risk as its incalculability does not even allow to bring forward the knowledge of how that risk would manifest itself. The deskilling dynamic and the reduced complexity that accompanies the practice of synthetic biology provide an additional social threat to the potentiality of the inherent genetic hazards (Cohen 1997; Lentzos 2012).
Consequently, a team like UCL iGEM is confined to a public space where uncertainty has pervaded the collective minds of people who were used to live in a world where risk was nearly always a manageable probability and rarely an unobtainable scientific insight. So, as this epistemological pitfall widens and the uncertainty grows, the social motivations for action are progressively taken over and driven by fear. In the process of this development, environmental controversies begin to arise around such issues as the cultivation of GM crops. Therefore, in the event of the iGEM competition, synthetic biology can almost inadvertently anticipate the public controversy by engaging with a global party of aspiring synthetic biologists. The instructions of playful innovation also entail unconventional and remarkably implicit incentives for the participating students to be more than a scientist in its narrow sense. Instead, the team objectives are defined in such a way that wanting to become a synthetic biologist implies acquiring the skills of a profession which requires the practitioners to be responsible in their actions. Engaging with the public from the very start and understanding how the scientist is inevitably embedded with the rest of society, are therefore inextricably linked to what it means to construct biological parts and devices to eventually use them for the benefit of society (Calvert 2013; Calvert and Martin 2009).
The governance implications of how iGEM works as a competition thus questions not only how we perceive synthetic biology and other emerging technologies such as nanotechnology in relation to addressing uncertainty and environmental concerns, but also how a politics of knowledge can manifest itself within an institutional setting. As illustrated by Zhang (2011), besides the notable uncertainty, the cross-borderness of synthetic biology confronts policy-makers with various challenges (Zhang et al. 2011), but at the same time, this pervasive feature also needs to be fully embraced by policy to ensure that the robustness of society can minimise harmful impact (Gross, 2010). In the case of synthetic biology, the cross-borderness means interdisciplinary action, regaining trust for technological developments amongst the public, and transcending political borders to envisage the transnational community in which synthetic biology operates. Within iGEM operations, transdisciplinarity has still proven to be unfavourable towards the social science of emerging technologies. While the synergetic linkage between engineers, biologists and computer scientists has occurred in a rather spontaneous way, the social sciences still have to overcome the constraints of priority considerations. In contrast to the playfulness of constructing a new genetically engineered micro-organism, constructing a trusting atmosphere is rather seen as a duty. As such, there is a discrepancy between the joy that comes from creating novelty, and the incidental embellishment of creating novelty to bring well-being and progress to society. As scientific apprentices, they probably already feel rather inclined to be preoccupied with the biotechnological puzzle that synthetic biology is.