Team:TU Eindhoven/SPAAC
From 2014.igem.org
Rolling Circle Amplification
One way to use the Click Coli system developed by iGEM Eindhoven 2014 is to functionalize the outside of the bacterial cell membrane with DNA molecules. This offers many exciting possibilities for applications. For example, Bertozzi et al. [1] showed that DNA-bound to the outside of cells could be used for 3-dimensiol tissue engineering. This technique would allow a vast array of applications where two or more cell types have to communicate with each other to be more finely controlled.
Another application is covering the membrane with functional aptamers, which can be used for targeting specific molecules or diseases [2 - 5]. Also, Lee et al. showed that DNA can be used to form a hydrogel like material, which has potentially interesting properties when coupled to a cell membrane [6]. All these functionalities have in common that they are almost always synthesized using so called Rolling Circle Amplification. The Eindhoven iGEM 2014 tries to use Rolling Circle Amplification to create a functional coating around the bacterial cell using the Click Coli system and specifically engineered DNA templates.
Bibliography
Agard, N. J., Prescher, J. A., & Bertozzi, C. R. (2004). A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society, 126, 15046-15047.
Baskin, J. M., & Bertozzi, C. R. (2007). Bioorthogonal click chemistry: covalent labeling in living systems. QSAR & Combinatorial Science, 26(11-12), 1211 - 1219.
Debets, M. F., Prins, J. S., Merkx, D., van Berkel, S. S., van Delft, F. L., van Hest, J. C., & Rutjes, F. P. (2014). Synthesis of DIBAC analogues with excellent SPAAC rate constants. Organic & Biomolecular Chemistry, 12, 5031-5037.
Meldal, M., & Tornoe, C. W. (2008). Cu-catalyzed azide-alkyne cycloaddition. Chemical Reviews, 108, 2952-3015.
Vugts, D. J., Vervoort, A., Stigter-van Walsum, M., Visser, G. W., Robillard, M. S., Versteegen, R. M., . . . van Dongen, G. A. (2011). Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach. Bioconjugate Chemistry, 22, 2072-2081.
Yang, M., Li, J., & Chen, P. R. (2014). Transition metal-mediated bioorthogonal protein chemistry in living cells. Chemical Society Reviews, 43(18), 6475-6660.