Team:Bielefeld-CeBiTec/Project/CO2-fixation/CarbonDioxide

From 2014.igem.org

Revision as of 22:51, 16 October 2014 by SebastianBlunk (Talk | contribs)


Module II - Carbon Dioxide (CO2) Fixation

Short summary

In the second module, CO2 fixation we aim to use a microcompartiment called carboxysome which occures in cyanobacteria or purple sulfurbacteria. Using this compartment we want to construct a Calvin cycle in E. coli. In addition we would like to compare the efficiency of the carboxysome with a free RuBisCO (Ribulose-1,5-bisphosphate-carboxylase-oxygenase), the 3-hydroxypropionate cycle or other types of carboxysomes. The product of the fixation will be pyruvate which can be used for the production of different industrial relevant metabolites. As a proof of concept we focus on the production of isobutanol.

Here you will find the results of the CO2 fixation.

Carbon dioxide

Increasing amounts of carbon dioxide have evolved into a major problem of the century. Because of the industrialization former traditional handmade ware is nowadays produced by machines and facilities which produce huge amounts of carbon dioxide. By changing nearly every production site to industrial production the amount of emission has increased tremendous. An additional factor is industrial livestock farming which generates methane and carbon dioxide as site products.
The typical balance between consumption and production of carbon dioxide is destabilized. The total forest area decreases and the emission increases year by year. Therefore many specialists work on a method to reduce the excess of carbon dioxide in the atmosphere. One reduction possibility could be the increased usage of photosynthesis-powered processes.
In additional approach to tackle this problem in our project is the usage of carbon dioxide as a carbon source for E. coli. The next step is the production of a desired product in this bacterium. It is not just our intention to bind carbon dioxide, but also to integrate the fixation process into useful products. There are a few pathways to bind carbon dioxide in bacteria which are suitable for our project.