Team:UCL/Humans/Soci/7
From 2014.igem.org
Sociological Imaginations - Reconciling Environmental Discourses
Policy & Practices Team
Explore Sociological Imaginations
Overview | Introduction | Methodology | GlossaryConceptual Framework: The Governance Challenges of Synthetic Biology | Theoretical Framework: Opposing Paradigms in the Face of Environmental Decline
Chapter 1: Synthetic Biology for Environmental Reform | Chapter 2: UCL iGEM 2014 in the Risk Society | Chapter 3: Transcending Multifaceted Borders
Chapter 4: The Playful Professional and Sustainable Governance| List of References
The Playful Professional and Sustainable Governance
iGEM: Counter-intuitive Governance
In this final chapter, the position of scientific authority in the governance of science will be discussed in relation to how iGEM operates. The expectations of both experts and lay people has undergone a shift toward an understanding in which the distinction between the two has blurred. This evolution, and the emergence of iGEM generally, has enabled the global unfolding of synthetic biology. What is characteristic about this, according to Zhang (2012), is the significance of some elements in the governance of synthetic biology that can be considered ‘counter-intuitive’. Firstly, iGEM is said to act as a ‘scientific building block’ that operates as “a transnational body that defines and characterises new materials, metrology and testing methods, and provides the grounds for international standardisation and regulatory convergence” (Zhang 2012: 2). Every year the competition brings as much to the development of synthetic biology as other more traditional scientific organisations and institutions do. The way this has been noticed or observed is through the methods of collection and categorisation of BioBricks, and by the way standards and codes of conduct are evolving. Secondly, a counter-intuitive dimension of science governance can be found in the social and educational role of iGEM. By means of global access to the necessary materials and an open-source model in the sharing of genetic constructions, iGEM has enabled a setting in which the students, as scientists in the making, are embedded and assimilating with an expert culture that integrates the issues of biosafety and biosecurity while also promoting a public engagement and exchanges on a transnational to almost global level. A last counter-intuitive element, finally, has to do with how iGEM has managed to have an impact because of the incentives it provides to students. In essence, the competition prompts them to learn about and subsequently create external accountability through the objectives of public engagement by interacting with various stakeholders, regardless of the different kinds of borders they are confronted with. (Zhang 2012).
The Professionalization of the Synthetic Biologist: Beyond Self-Governance
As became clear in the previous chapter, collaborations and exchanges have been key in creating and fostering a community of synthetic biologists, most saliently through the Registry of Standard Biological Parts. Besides this open-source biology network, according to Mukunda et al. (2009), to make this community culture open and safe, it must operate as a professional organization that can ensure biosecurity (Mukunda et al. 2009). When it comes to a specific iGEM team, such as UCL iGEM 2014, it is evident that the context of the competition provides a framework for incentivized self-regulation (Zhang et al. 2011). Moreover, the entire experience of participating in iGEM is about combining the burgeoning of a new-fangled life science discipline with education, a sense of community formation, and the creation of a collaborative and open network of students (iGEM 2014b). This set of social conditions is what Weir and Selgelid (2009) would consider as appropriate for the process of professionalization, which has been proposed as a way the governance of synthetic biology could be operationalised. The motivation behind it is that the concept bridges the bottom-up approach of autonomous self-governance with the top-down involvement of political and legal schemes. In other words, the useful and effective characteristics of the former are made compatible with governmental interventionism, taking into account that scientific objectives are matched with the public concern for accountability (Weir and Selgelid 2009).
The purpose of professionalizing synthetic biology is to connect the scientific value of expertise with the responsibility of the scientists to practice their field in a way that is morally accepted. The origins for this strategy comes from medical and engineering professions, where expertise is associated with the morality of the practice of the profession. If the same is applied to synthetic biology by means of doing no harm with the technology, it can be reconciled with and held publicly accountable with respect to the objectives of public health and national security. In fact, synthetic biologists already somewhat fulfil this requirement as many of them are actually engineers that permeated the field of biology (Weir and Selgelid 2009). This even applies to the UCL team where five students are biochemical engineers in the making and two others are pursuing a PhD in this field. The fact that the whole project is coordinated from the UCL Department of Biochemical Engineering also gives an indication of how strong this project is approached from an engineering perspective.
Nevertheless, in order to circumvent the governance conundrum for synthetic biology, professionalization can also be seen as one of the ways to connect the advantages of self-governing and self-regulating scientific production to a public policy framework. Science is often considered as a form of knowledge production that remains immoral and centred on discovery. By defining it in professional terms, other values can be attributed to it as well. In any case, what is suggested here is that there are ways in which governance can be organised so that the complexity of the issues can also be dealt with from within. Since synthetic biology has problematized governance for innovative practices in the life sciences, new regulatory frameworks have come forward to address the issue. Biosafety and biosecurity measures, such as updated codes of conduct, ethics education, oversight, commercial limitations, registration and licensing are among the options that have been suggested. Even so, there is a consensus with the community of synthetic biologists that the scientific momentum to gain progress as a discipline remains underpinned by transparency and synergism on a transnational level (Weir and Selgelid 2009). Furthermore, Miller and Selgelid (2007) argue that dual-use governance should be balanced between individual sovereignty of scientists and undivided governmental oversight (Miller and Selgelid 2007). The implied solution would then be a reflexive approach made up of self-governance within the scientific community itself. The role of the government can vary in degree of their involvement, but overall, the provided governance structure must assure that advances in science and economic growth are not curtailed (Kelle 2013).
Self-governance would entail that the synthetic biology community would be endowed with an operational framework in which it can voluntarily regulate itself to avoid misuse. Individual scientists are then able to work with codes of conduct that have been developed by the community itself and not by government. The main argument for this is that this would prevent a governmental overregulation that, per definition, is external to the community. Nevertheless, a complete disconnect would also imply that the importance of democratic engagement in the matter would be poorly recognised at the time when societal implications are pertinent (Selgelid 2009). Nonetheless, there have been some concerns with selfregulatory initiatives in the sense that they have been thought of as a form of “closed-shop” governance by NGOs like the ETC Group, denoting that regulatory self-reliance would never develop into meaningful action (Campos 2010; ETC Group 2009; Pollack 2010). Team member Georgia agreed that self-reliance or self-regulation would not be beneficial for scientists:
“It is clearly not unjustified to be cautious, I mean if we were incautious that would be bad because if scientists, as much as we have our safeguards, I feel if we didn’t have as much pressure from the outside world, the safeguards would be like less stringent, I’m not sure because I don’t know to what extent other people, other scientists, I don’t know how they feel but like, I think it’s always important to have societal pressure so that everybody is constantly checking back on themselves. But, yeah, I don’t think cautiousness is unjustified but maybe just blind fear is unjustified. They like hear something and then they don’t attempt to actually look into it further and then they just absorb all the information from bad sources and then that is unjustified because they are not making any effort to understand just to regurgitate the things they have heard from the Daily Mail”.
At the same time, however, there was general agreement in the team that if the public were involved through the workings of government, science could not afford to wait for policy-makers to get a handle on innovation that they see as being essential for society’s development.
[Daniel] “The potential of synbio is too big (…) so much good can be done with it”.
[Georgia] “As long as policy keeps up”.
[Daniel] “Yeah, if there is regulation...”
[Ning] “Regulation and communication so that people know the limitations, the
benefits of this kind of technology so that they are not just “oh my God, this is a GMO, this
is going to affect our natural world””.
iGEM as Educational Model for Responsible Innovation
The organisational tension that exists between self-governance and governmental oversight stems, according to Cohen (1997), partly from a prevailing linear understanding of the scientific attitude or ethic. Reducing uncertainty is said to become achievable by increasing knowledge so that scientists can subsequently capitalise on the public esteem they gain from having solved an uncertain issue, and hence continue to build on this strategy. From the eco-modernist point of view, this corresponds with the way in which industrial performance can remain competitive and economic growth can be accomplished (Cohen 1997). Recently, this rationale has been approached critically, as Cohen argues:
“It now appears that the correspondence between a society’s scientific attitude and its scientific knowledge may conform to an inverted U-shape. In other words, societal support for science increases with scientific knowledge only to a certain point, after which further understanding contributes to a decline in the favourability of public appreciation for science” (Cohen 1997: 114).
One of the reasons that the author gives is that the lay public has had the opportunity to become familiar with alternative knowledge systems which gained considerable legitimacy themselves. This occurred as increasing general welfare in the developed world brought new ways of knowledge transfer that became available to a wider and wealthier public (Cohen 1997). In the process of regaining trust among the public, forms of ‘public engagement’ and ‘upstream engagement' are being set up by scientists as a response in order to contribute to the variety in science education (Edwards and Kelle 2012). Hence, the motivation behind the iGEM competition also lies in the fostering of an educational method that seeks to enhance professionalization in order to adapt it to a system where external accountability can be rendered governable. When the team discussed iGEM as an innovative educational setting, they manifestly agreed that this opportunity has allowed them to learn more effectively and with greater relevance. This was the only topic that sparked the most enthusiasm and support for the iGEM organisation. They also wanted to highlight how this exemplified the ineffectiveness of traditional learning methods at university.
[Tanel] “Yeah, we try to make noise in the competition because, you know, it is not primarily based on the lab work. It’s more than just that. So the human practice, public engagement and everything else, we try to make it a grand project”.
…
[Yan-Kay] “I was in a focus group last week about how education has changed from GSCE level to undergrad, and I think one of the issues we all thought was that creativity seems to decrease as you go up because most students tend to study for the sake of getting through exams. So being in an iGEM team, we have a lot more scope of different ideas and try to implement those ideas”.
[Adam] “Yeah, probably I’m more learning doing this than during my course”.
[Georgia] “Yeah, I would agree. I learned more in these last six months working on this project than I have – I’ve learned more practically like in lectures, you just try to absorb information but you never really have the chance to apply it. And here, like literally every day you’re solving problems. It’s like a nice work-out for your brain. And you never collaborate as a team. I mean, obviously you do in like research but a lot of the time being a scientist is quite a solitary role and this is like a lovely team thing where everybody bounces off each other and kind of just (…). And it’s not just science as well, we’re doing like human practice and public engagement and we get to develop our animation and web design skills. It’s just awesome! You do so much and you learn so much”!
It can be said that the operational structure of the iGEM competition thus works as an incentive to learn your scientific craft in a way that encompasses its role in relation to society. All competing teams are in the running for several awards based on the various aspects of their projects but they can also win a prize for being the best in their own project category or ‘track’. UCL iGEM 2014 competed in the Environment Track and can thus win a prize for the best environmental project (Balmer and Bulpin 2013). The incentives of the competition are shaped by the governing values as explained by Randy Rettberg at the end of last year’s jamboree: effort, accomplishment, respect (for other people involved and for the technology), cooperation (with regard to open-source science for transparency) and integrity (in being truthful about the science) (iGEM 2013b). These shape the reflexive nature of the work that has been done within the iGEM framework and enable the students expand or ‘open up’ their views on the decision-making process (Balmer and Bulpin 2013). This has especially been the case with regard to an addition to the interdisciplinary nature of the competition. Since its inception in 2008, considerable attention in iGEM projects is now given to ‘human practices’, or ‘policy and practices’ as it is now called, to bring together natural scientists with social scientists. As such it is now part of the competition as a significant competitive element:
"The most successful teams often work hard to imagine their projects in a social context, and to better understand issues that might influence the design and use of their technologies. Increasingly, they also work with students and advisors from the humanities and social sciences to explore topics concerning ethical, legal, social, economic, biosafety or biosecurity issues related to their work. Consideration of these “Human Practices” is crucial for building safe and sustainable projects that serve the public interest". (iGEM 2014j).
This promotes the concept of ‘reciprocal reflexivity’ as a form of collaboration that creates the added value of scientists becoming more reflexive through their involvement with wider social assumptions (Calvert and Martin 2009; Wilsdon et al. 2005). Sociological Imaginations is, in fact, one of the outcomes of the human practice efforts of UCL iGEM 2014, in which such a collaboration took place. In the process of getting acquainted with the team in June, there was a genuine interest from the team to know what kind of contributions this section could bring to the project. They were always very open and they acknowledged that a social scientist could help significantly in the competition. However, attempting to bring forward a more inclusive strategy to my study, I was challenged by the workload that existed in the team to gain progress on making the scientific side of things work. Making an ethnographic analysis of the team preferably requires the involvement of the whole team. The team, however, was seldom together in the same place at the same time as most communication occurred via the Facebook group page and to collective e-mails between the group and the team coordinator. Many suggestions were made by team member Alberto and myself to work out an ambitious 'human practice' strategy but time constraints and other engagements made the collective effort rather difficult. We were the only two social science students who would have to get the attention of many more natural science and engineering students. This would almost give the impression that there was a divide between the social scientists and the natural scientists, which is not entirely true. As social scientists howeer, you can only hover around the team and make observations while they have to focus on their own specific task. But in the end, most efforts were able to conjoin on the #UncolourMeCurious campaign that turned out to be successful.
In any case, the interdisciplinarity creates a platform for potential synergetic action. And it is this that makes possible a non-linear way of knowledge production or Mode 2 knowledge production in relation to the governance of an emerging technology, which corresponds to a form of environmental governance that finds a common ground on the importance of sustainable action (Balmer and Bulpin 2013). The values portrayed by Randy Rettberg are compatible with the qualities of this Mode 2 science in contrast to the linear account, as compared by Matthias Gross (2010).
Traits | Mode 1 | Mode 2 |
Audience | Academic community | Wider society |
Context | Displinary | Transdisciplinary |
Organisation | Hierarchical and institutional | Egalitarian |
Top priority | Academic freedom | Social responsibility |
Means of evaluation | Peer review and internal control | General social relevance and social robustness |
Degree of validation | Scientific certainty | Uncertainty as part of the science |
Planning | Long-term/linear | Exploratory/experimental |
-------------Gross-------------
Furthermore, what is often attributed to synthetic biology and iGEM is the importance of playfulness. This can be interpreted as an adaptation of the experimental nature of Mode 2 knowledge production as a way to explore whilst being in the midst of uncertainty. In terms of governance, Zhang (2013) has also included this playful and experimental features as it being a form of art (Carlson 2010; Zhang 2013). As Randy Rettberg argues, "iGEM is a human mechanism to bring focus" and "engineering biology is just playing fun. That is what we are here to celebrate at the Jamboree" (iGEM 2013b). Team member Behzad also considered the playful and creative aspect as essential in making them learn more effectively:
"I did a placement during last summer and, I mean, you spend a lot of time in the lab but what you don’t get, you don’t get any of the planning codes. You don’t – there’s no self-directing like a case I did (…) was not “maybe you should try that”. It was more following orders rather [...] than creativity".
The way iGEM works as a concept for education is thus quite different, giving the student the opportunity to be reflexive about what they are learning instead of being acquiescent in a learning process layed out and predetermined by conventional educators. Moreover, what some team members acknowledged about this in particular is that working on their project signified an introduction into thinking holistically about what they are doing:
[Georgia]"For my chemistry, for my degree, I’ve spent a lot of time in the lab, like four hours every day but you are literally just following a recipe. There’s no time to think about what you’re doing. You literally work on this deadline and you just try to get things done perfectly and yet you learn how to reflux without burning your stuff but you don’t know what’s going on. I mean, you don’t know what you’re doing and in this case, because you’re planning every step of the way, you know exactly why and what you’re doing".
[Adam] "Because you get a bigger picture".
[Georgia] "Yeah, a whole picture".
This way of thinking was also felt by the team in the way that when one is immersed in the practice of synthetic biology, one gets a better understanding of how much of the uncertainty is actually perceived as a social construction without having a good understanding of the scientific process.
[Georgia] "The whole scientific process, I think part of the reason that scientists say that the science is good because we see every step of the way. We see like what we go through and the safety aspects and if, if the public was taken on that journey with us, they’d be more likely to kind of like hold a similar opinion because I feel like sometimes there are these misconceptions that scientists come and go in the lab and decide to do this one day and create crazy things (…). But if they were there from the offset watching us struggle and trying to make everything perfect, there might be less of a worry from the general public that we’re crazy".
...
[Tanel] "I think the advantages of engaging with them just, I mean they have no idea what we have been up to, as you said, from the start to the beginning, and understanding what it entails. That’s our responsibility".
[Georgia] "I think both sides, that they keep checks on us. We help them understand. I think it’s that way of doing it in general in science, just always having people that aren’t entirely immersed in this world. Being a part of it and being here to spread the word".
All this gives an indication of the self-correcting risk society explained by Maurie Cohen (1997). Uncertainty becomes recognised or is rendered acceptable as a source for social and institutional learning, here exemplified by the iGEM competition. Therefore, it can also be termed as a reflexive governance that aims for a sustainable development of synthetic biology (Voss et al. 2006).