Team:Bielefeld-CeBiTec/Project/rMFC/Mediators
From 2014.igem.org
Revision as of 20:16, 16 October 2014 by SebastianBlunk (Talk | contribs)
Module I - reverse microbial fuel cell (rMFC)
Neutral Red
Neutral red (3-Amino-7-dimethylamino-2-methylphenazine hydrochloride) is a phenazine-based dye which is normally used as pH-indicator due to the fact that it changes its colour from red (pH 6.8) to yellow (pH 8.0).
Besides that it could be shown that reduced neutral red is also capable as the sole source of reducing power for growth and metabolism of H2 consuming bacteria cultures.(Park, D. H. & Zeikus, J. G. 2000)
The chemical structure is shown in figure 1.
There is also evidence that electrically reduced neutral red can bind to the cell membrane and chemically reduces NAD. Furthermore it is not toxic to the cells and can replace H2 which is the natural electron shuttle for some bacteria species. (Park et al., 1999)
Bromphenol Blue
Bromphenol blue is a triarylmethane dye that is similar to neutral red and is normally used as a biological stain or as a pH indicator.(NCBI:PubChem Compound) Having a redox potential of -739 mV vs. SCE it is also capable to function as a mediator.(Strehlitz et al., 1994)Figure 2 shows the chemical structure of bromphenol blue.
Cytochromes
Cytochromes are hemoproteins which act as a part of electron transport in the respiratory chain. Depending on the characteristics of the cytochrome it can be assigned to one of three main groups, called cytochrome a, b and c.(Spektrum, 2001)Members of the cytochrome a class are the reduction/oxidation units of the cytochrome-oxidase which catalyzes the electron transport from cytochrome c to oxygen as the final electron acceptor. B-type cytochromes are known to have the lowest redoxpotential of the respiratory chain and are located between ubichinon and cytochrome c.(Spektrum, 2001)
However c-type cytochromes are the best studied and most abundant group of cytochromes. For metal-reducing bacteria it has been already shown that several of these c-type cytochromes are essential for electron transfer between an electrode and the cell. Therefore they can function as an electrondonor as well as an acceptor by changing the redox state of their heme group consisting of an iron atom surrounded by porphyrin rings.(Qiao et al., 2010)
The heme group of cytochrome c is shown in figure 3.
One of the best known organisms that is able to accept electrons from an electrode is Geobacter sulfurreducens. It has been demonstrated that current-consuming biofilms of this organism highly express a key-type periplasmic cytochrome c. The deletion of the corresponding gene GSU 3274 leads to a total inhibition of electron uptake.(Strycharz et al., 2011)
This indicates the importance of this c-type cytochrome for current-consuming biofilms and induces us to consider it as an alternative of realizing enhanced electron uptake in E. coli.
References
-
Park, D. H. & Zeikus, J. G. (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. In: Applied and Environmental Microbiology, 66 (4), pp. 1292 - 1297.
-
Azariah, A. N., Berchmans, S., Yegnaraman (1998) Electrochemical behaviour of neutral red. Bulletin of Electrochemistry. , 14 (10), pp. 309-314
-
Fultz, M. L., Durst, R. A. (1982): Mediator compounds for the electrochemical study of biological redox systems: a compilation Analytica Chimica Acta. ,140, pp. 1-18
-
Park, D. H.,Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J. G. (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production. In: Appl. Environ. Microbiol., 65 (7), pp. 2912 - 2917.
-
NCBI:PubChem Compound: Bromphenol Blue
-
Strehlitz, B., Gründig, B., Vorlop, K.-D., Bartholmes, P., Kotte, H., Stottmeister, U. (1994) Artificial electron donors for nitrate and nitrite reductases usable as mediators in amperometric biosensors. In: Fresenius' Journal of Analytical Chemistry, 349, pp. 676-678.
-
Spektrum Akademischer Verlag (2001): Kompaktlexikon der Biologie - Cytochrome
-
Qiao, Y., Bao, S. & Li, C. M. (2010): Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. In: Energy Environ. Sci. 3 (5), pp. 544 - 553.
-
Stycharz, S. M., Glaven, R. H., Coppi, M. V., Gannon, S. M., Perpetua, L. A., Liu, A., Nevin, K. P. &. Lovley, D. R. (2011):Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. In: Bioelectrochemistry 80, pp. 142 - 150.