Team:UESTC-China/Design

From 2014.igem.org

(Difference between revisions)
 
Line 491: Line 491:
<div id="SensorEditingArea" class="SensorEditingAreaClass">
<div id="SensorEditingArea" class="SensorEditingAreaClass">
-
 
+
<h1 style="color:#1b1b1b; position:relative; left:0px; padding:15 5px; font-size:40px; font-family: calibri, arial, helvetica, sans-serif; font-weight: bold;font-style: Italic; text-align:center; width:1140px;">Design</h1>
<p style="color:#1b1b1b;">In order to further increase the plant ability of formaldehyde uptake and metabolism by synthetic biology technology, we choosed four enzyme-coding genes related to formaldehyde metabolic pathways from microorganism and plant: 3-hexulose-6-phosphate (HPS), 6-phospho-3-hexuloisomerase (PHI), formaldehyde dehydrogenase (FALDH) and formate-dehydrogenase (FDH). These genes are transformed into plants and will promote formaldehyde metabolism. For security reasons, we also induce <i>AdCP</i> gene into our plans because of its capability to lead to pollen abortion. At the same time, chloroplast transformation is taken into consideration to avoid gene flow and improve gene expression.
<p style="color:#1b1b1b;">In order to further increase the plant ability of formaldehyde uptake and metabolism by synthetic biology technology, we choosed four enzyme-coding genes related to formaldehyde metabolic pathways from microorganism and plant: 3-hexulose-6-phosphate (HPS), 6-phospho-3-hexuloisomerase (PHI), formaldehyde dehydrogenase (FALDH) and formate-dehydrogenase (FDH). These genes are transformed into plants and will promote formaldehyde metabolism. For security reasons, we also induce <i>AdCP</i> gene into our plans because of its capability to lead to pollen abortion. At the same time, chloroplast transformation is taken into consideration to avoid gene flow and improve gene expression.
</p><br/>
</p><br/>

Latest revision as of 02:27, 18 October 2014

UESTC-China