Team:UESTC-China/Design
From 2014.igem.org
(Difference between revisions)
Line 498: | Line 498: | ||
<p style="color:#1b1b1b;"> | <p style="color:#1b1b1b;"> | ||
<br/> | <br/> | ||
- | The ribulose monophosphate (RuMP) pathway is one of the formaldehyde-fixation pathways found in microorganisms called methylotrophs, which utilize one-carbon compounds as the sole carbon source. The key enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS), which fixes formaldehyde to D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose-6-phosphate (Hu6P), and 6-phospho-3-hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P). The two key enzymes work in chloroplast both. We will use fusion expression to conduct heterologous expression in tobacco (<i>Chen et al., 2010</i>). | + | The ribulose monophosphate (RuMP) pathway is one of the formaldehyde-fixation pathways found in microorganisms called methylotrophs, which utilize one-carbon compounds as the sole carbon source. The key enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS), which fixes formaldehyde to D-ribulose-5-phosphate (Ru5P) to produce D-arabino-3-hexulose-6-phosphate (Hu6P), and 6-phospho-3-hexuloisomerase (PHI), which converts Hu6P to fructose 6-phosphate (F6P). The two key enzymes work in chloroplast both. We will use fusion expression method to conduct heterologous expression in tobacco (<i>Chen et al., 2010</i>). |
<br/><br/></p> | <br/><br/></p> | ||
<div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/3/3f/Regu1.png" naptha_cursor="text"> | <div align="center"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2014/3/3f/Regu1.png" naptha_cursor="text"> |
Revision as of 02:12, 18 October 2014