Team:Bielefeld-CeBiTec/Results/rMFC
From 2014.igem.org
Line 26: | Line 26: | ||
Our first module deals with the construction of an <i>E. coli</i> strain, which is able to accept electrons stimulating its metabolism. We characterized it in our electrobiochemical reactor system testing different mediators, electrode materials and reactor set-ups. <br> | Our first module deals with the construction of an <i>E. coli</i> strain, which is able to accept electrons stimulating its metabolism. We characterized it in our electrobiochemical reactor system testing different mediators, electrode materials and reactor set-ups. <br> | ||
Our genetical achievements could be devided in two parts.<br> | Our genetical achievements could be devided in two parts.<br> | ||
- | In the first place we investigated the effect of the C4 carboxylate transporter DcuB knockout on <i>E. coli</i> KRX. Furthermore we showed the integration of the outer membrane porine OprF (<a href="http://parts.igem.org/wiki/index.php/Part:BBa_K1172507">BBa_K1172507</a>) into the bacterial genome by replacing the gene of E. coli C4 carboxylate antiporter DcuB. | + | In the first place we investigated the effect of the <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/rMFC/ElectronTransfer#deltaResults">C4 carboxylate transporter DcuB knockout</a> on <i>E. coli</i> KRX. Furthermore we showed the integration of the outer membrane porine OprF (<a href="http://parts.igem.org/wiki/index.php/Part:BBa_K1172507">BBa_K1172507</a>) into the bacterial genome by replacing the gene of E. coli C4 carboxylate antiporter DcuB. |
The funtionality of the genome integrated outer membrane porin OprF (<a href="http://parts.igem.org/wiki/index.php/Part:BBa_K1172507">BBa_K1172507</a>) in <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/StrainsAndConstructs#KRXdeltadcuB"><i>E.coli</i> KRX ΔdcuB::oprF</a> was investigated with a <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/rMFC/ElectronTransfer#NPNResult">NPN-Uptake-Assay</a>. <br> | The funtionality of the genome integrated outer membrane porin OprF (<a href="http://parts.igem.org/wiki/index.php/Part:BBa_K1172507">BBa_K1172507</a>) in <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/StrainsAndConstructs#KRXdeltadcuB"><i>E.coli</i> KRX ΔdcuB::oprF</a> was investigated with a <a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Results/rMFC/ElectronTransfer#NPNResult">NPN-Uptake-Assay</a>. <br> | ||
Revision as of 01:07, 18 October 2014
Module I - Reverse Microbial Fuel Cell (rMFC)
Our first module deals with the construction of an E. coli strain, which is able to accept electrons stimulating its metabolism. We characterized it in our electrobiochemical reactor system testing different mediators, electrode materials and reactor set-ups.
Our genetical achievements could be devided in two parts.
In the first place we investigated the effect of the C4 carboxylate transporter DcuB knockout on E. coli KRX. Furthermore we showed the integration of the outer membrane porine OprF (BBa_K1172507) into the bacterial genome by replacing the gene of E. coli C4 carboxylate antiporter DcuB.
The funtionality of the genome integrated outer membrane porin OprF (BBa_K1172507) in E.coli KRX ΔdcuB::oprF was investigated with a NPN-Uptake-Assay.
We demonstrated that the knockout of C4 carboxylate antiporter dcuB was successful.
Our constructed E. coli KRX ΔdcuB::oprF strain shows no succinate export under anaerobic conditions. This demonstrates a successful knockout of the dcuB gene. Besides Biolog® analysis showed that there is no significant respiratory activity of E.coli KRX ΔdcuB::oprF in the presence of fumarate.
The electrobiochemical behavior of E. coli KRX with knocked out C4 carboxylate antiporter DcuB was tested in a H-cell reactor.
The second part deals with the investigation of fumarate reductase Frd (BBa_K1465102).