Team:ETH Zurich/lab/chip

From 2014.igem.org

(Difference between revisions)
(Time-Lapse Movies)
Line 111: Line 111:
==Time-Lapse Movies==
==Time-Lapse Movies==
-
Below you find an overview of the time-lapse movies taken during the summer. In the very first trial the wells were filled with [https://2014.igem.org/Team:ETH_Zurich/lab/protocols#LB_medium_from_dehydrated_product LB agar], holes were punched with a pipette tip and filled with highlighter-ink ([http://en.wikipedia.org/wiki/Pyranine pyranine]) to visualize diffusion (see video 1). Later, different set-ups were tested: chambers filled with liquid [[https://2014.igem.org/Team:ETH_Zurich/lab/protocols#LB_medium_from_dehydrated_product LB medium] separated by solidified 2% agarose in the connecting channel and [https://2014.igem.org/Team:ETH_Zurich/lab/bead alginate beads] in liquid [https://2014.igem.org/Team:ETH_Zurich/lab/protocols#Complex_bead_medium_.28CB_medium.29 CB medium]. We continued with the 'alginate beads in  liquid medium' set-up, as it yielded the most promising intermediate results, and could then finally show cell-to-cell communication of bacteria confined in beads on our millifluid chip.
+
Below you find an overview of the time-lapse movies taken during the summer. In the very first trial the wells were filled with [https://2014.igem.org/Team:ETH_Zurich/lab/protocols#LB_medium_from_dehydrated_product LB agar], holes were punched with a pipette tip and filled with highlighter-ink ([http://en.wikipedia.org/wiki/Pyranine pyranine]) to visualize diffusion (see video 1). Later, different set-ups were tested: chambers filled with liquid [https://2014.igem.org/Team:ETH_Zurich/lab/protocols#LB_medium_from_dehydrated_product LB medium] separated by solidified 2% agarose in the connecting channel and [https://2014.igem.org/Team:ETH_Zurich/lab/bead alginate beads] in liquid [https://2014.igem.org/Team:ETH_Zurich/lab/protocols#Complex_bead_medium_.28CB_medium.29 CB medium]. We continued with the 'alginate beads in  liquid medium' set-up, as it yielded the most promising intermediate results, and could then finally show cell-to-cell communication of bacteria confined in beads on our millifluid chip.

Revision as of 00:59, 18 October 2014

iGEM ETH Zurich 2014