Team:Freiburg/Content/Results/The combination
From 2014.igem.org
Mirja Harms (Talk | contribs) |
Mirja Harms (Talk | contribs) |
||
Line 10: | Line 10: | ||
<section> | <section> | ||
- | <p>We, the iGEM Team Freiburg 2014, combined the spatial resolution of the light system with the specificity of our viral vector | + | <p>We, the iGEM Team Freiburg 2014, combined the spatial resolution of the light system with the specificity of our viral vector to generate patterns in a homogenous cell culture. Since cells that were not illuminated with a specific wave length did not express the specific mCAT-1 receptor, they were not infected by viral particles. |
</p> | </p> | ||
<h2 id="Light-induced-receptor">Light induced receptor</h2> | <h2 id="Light-induced-receptor">Light induced receptor</h2> | ||
- | <p> | + | <p>For light induced gene transfer with our viral vector we combined mCAT-1, the receptor our viral vector is specific for, to the blue light system (p14ls_003) or the red light system (p14rz_002). These light induced receptors were labeled with mCherry that was cleaved after gene expression remaining in the cytosol. The activation of gene expression was induced by illumination with a special wave length, 660 nm for p14rz_002 (Fig. 1) and 465 nm for p14ls_003 (Fig. 2-3). If the cells containing the light inducible receptor were not exposed to light (dark controls), no mCherry was detected in the cytosol, i.e. no receptor was expressed and transported to the cell surface. |
</p> | </p> | ||
Line 32: | Line 32: | ||
<div class="col-sm-6"> | <div class="col-sm-6"> | ||
- | <p> | + | <p>Since our viral vector was not able to integrate into cells not expressing mCAT-1 on their surface, it was not able to infect non illuminated cells (Fig. 2-3). To mark cells that were targeted by viral particles we transduced the cells with our viral vector transferring a gene for EGFP as a cargo. In principle any gene of interest could be transferred light directed using The AcCELLerator. |
</p> | </p> | ||
Revision as of 20:41, 17 October 2014
The combination
We, the iGEM Team Freiburg 2014, combined the spatial resolution of the light system with the specificity of our viral vector to generate patterns in a homogenous cell culture. Since cells that were not illuminated with a specific wave length did not express the specific mCAT-1 receptor, they were not infected by viral particles.
Light induced receptor
For light induced gene transfer with our viral vector we combined mCAT-1, the receptor our viral vector is specific for, to the blue light system (p14ls_003) or the red light system (p14rz_002). These light induced receptors were labeled with mCherry that was cleaved after gene expression remaining in the cytosol. The activation of gene expression was induced by illumination with a special wave length, 660 nm for p14rz_002 (Fig. 1) and 465 nm for p14ls_003 (Fig. 2-3). If the cells containing the light inducible receptor were not exposed to light (dark controls), no mCherry was detected in the cytosol, i.e. no receptor was expressed and transported to the cell surface.
Since our viral vector was not able to integrate into cells not expressing mCAT-1 on their surface, it was not able to infect non illuminated cells (Fig. 2-3). To mark cells that were targeted by viral particles we transduced the cells with our viral vector transferring a gene for EGFP as a cargo. In principle any gene of interest could be transferred light directed using The AcCELLerator.
As we know that the transient mCAT-1 receptor that was not linked to a light system needs 24 hours for expression in HEK293 cells, we determined the expression time of the receptor that was induced by blue light after illumination for five hours. We used a receptor that was labeled with both, mCherry and an HA-tag (p14ls_003), for analysis with Western blot and fluorescence microscopy. The results show that the receptor had an expression peak at 24 hours after beginning of illumination.
Pattern Generation
For generating pattern in homogenous cell layers we transfected HEK293T cells with the blue light system and the blue light induced receptor (p14ls_003). Dishes were covered with a photo mask preventing areas in the cell culture from light exposure. However, the blue light system is very sensitive to even low intensities of blue light. Due to scatterd light the receptor was activated in a huge area of the cell culture. Thus patterns were not visible to this time point due to by light scatter activated receptors (Fig.).