Team:UESTC-China/Modeling3
From 2014.igem.org
(Difference between revisions)
Line 525: | Line 525: | ||
<p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/a/ae/Ms1.gif"><em style="position:absolute; right:250px; top: 60px;">(1)</em></p> | <p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/a/ae/Ms1.gif"><em style="position:absolute; right:250px; top: 60px;">(1)</em></p> | ||
<br/> | <br/> | ||
- | <p style="color:#1b1b1b;">where the vx, vy and vz are the components of velocity of the gas molecules on the x-axis, y-axis and z-axis, respectively. <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> is the gas molecule maxwell speed distribution function. Ω is the number of gas molecule diffused into unit leaf areawithin per unit time. <i>S, t</i> is the leaf area and time, respectively. In equation <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> , the <i>n</i> stands for the number of formaldehyde in air, <i>m</i> for molecular weight of | + | <p style="color:#1b1b1b;">where the vx, vy and vz are the components of velocity of the gas molecules on the x-axis, y-axis and z-axis, respectively. <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> is the gas molecule maxwell speed distribution function. Ω is the number of gas molecule diffused into unit leaf areawithin per unit time. <i>S, t</i> is the leaf area and time, respectively. In equation <img style="width:9%;" src="https://static.igem.org/mediawiki/2014/f/fd/F.gif"> , the <i>n</i> stands for the number of formaldehyde in air, <i>m</i> for molecular weight of formaldehyde, <i>k</i> for boltzmann constant and <i>T</i> for temperature. From Equ.1, we got: </p> |
<br/> | <br/> | ||
<p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/4/42/Ms2.gif"><em style="position:absolute; right:250px; top: 20px;">(2)</em></p> | <p style="color:#1b1b1b;"><img style="width:35%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/4/42/Ms2.gif"><em style="position:absolute; right:250px; top: 20px;">(2)</em></p> | ||
Line 561: | Line 561: | ||
<p style="color:#1b1b1b;"><img style="width:45%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/b/b9/Ms10.gif"><em style="position:absolute; right:250px; top: 20px;">(10)</em></p> | <p style="color:#1b1b1b;"><img style="width:45%; margin-left:15px;" src="https://static.igem.org/mediawiki/2014/b/b9/Ms10.gif"><em style="position:absolute; right:250px; top: 20px;">(10)</em></p> | ||
<br/> | <br/> | ||
- | <p style="color:#1b1b1b;">where <i>C</i> stands for the concentration difference inside (<i>Ci</i>) and outside (<i>Ca</i>) stoma. Therefore, Equ.10 is the relationship between stomatal conductance and net absorption rate of plant leaf, concentration difference inside and outside stoma when the temperature and humidity remain unchanged. It indicated that plant leaf stomatal conductance and net | + | <p style="color:#1b1b1b;">where <i>C</i> stands for the concentration difference inside (<i>Ci</i>) and outside (<i>Ca</i>) stoma. Therefore, Equ.10 is the relationship between stomatal conductance and net absorption rate of plant leaf, concentration difference inside and outside stoma when the temperature and humidity remain unchanged. It indicated that plant leaf stomatal conductance and net formaldehyde absorption rate is proportional and inversely proportional to the concentration difference.</p> |
<br/> | <br/> | ||
<h1 class="SectionTitles" style="width:1100px;">Results</h1> | <h1 class="SectionTitles" style="width:1100px;">Results</h1> | ||
Line 577: | Line 577: | ||
</div> | </div> | ||
<br/> | <br/> | ||
- | <p style="color:#1b1b1b;">As all the information above concerned, we realized that since the absorption radio <i>η</i> maintains the constant and by enhancing the absorption radio of formaldehyde, the net absorption rate <i>P</i> would be significant increased. It has been proved (<i>Wang | + | <p style="color:#1b1b1b;">As all the information above concerned, we realized that since the absorption radio <i>η</i> maintains the constant and by enhancing the absorption radio of formaldehyde, the net absorption rate <i>P</i> would be significant increased. It has been proved (<i>Wang et al., 2014</i>) that, the gene <i>AtAHA2</i> which was transferred into plant cell, can significantly increase the stomata opening. From that, the absorption rate of formaldehyde would be increased. Therefore, the gene <i>AtAHA2</i> is a key component to intensify the net absorption rate <i>P</i>. From Fig.1, we also found that the larger P, the greater stomatal conductance <i>Gs</i>. Thus, we will clone the stomatal regulation gene, <i>AtAHA2</i>, to the expression vector and transfer into plant cell in the future.</p> |
<br/><br/> | <br/><br/> | ||
<h1 class="SectionTitles" style="width:1100px;">Link to other modeling</h1> | <h1 class="SectionTitles" style="width:1100px;">Link to other modeling</h1> | ||
- | <a href="https://2014.igem.org/Team:UESTC-China/Modeling1" class="button">Photosynthetic | + | <a href="https://2014.igem.org/Team:UESTC-China/Modeling1" class="button">Photosynthetic formaldehyde assimilation pathway</a> |
<br/> | <br/> | ||
<a href="https://2014.igem.org/Team:UESTC-China/Modeling2" class="button">Folate-independent pathway</a> | <a href="https://2014.igem.org/Team:UESTC-China/Modeling2" class="button">Folate-independent pathway</a> |
Revision as of 12:11, 17 October 2014