Team:Hong Kong HKUST/pneumosensor/results
From 2014.igem.org
Line 85: | Line 85: | ||
<br><br> | <br><br> | ||
<i>comE</i> mutagenesis forward primer: CGCTATTATCGTCTTTATCACTAGCCGATCAGAGTTTGCGACTCTAAC | <i>comE</i> mutagenesis forward primer: CGCTATTATCGTCTTTATCACTAGCCGATCAGAGTTTGCGACTCTAAC | ||
- | |||
<br> | <br> | ||
<i>comE</i> mutagenesis reverse primer: GTTAGAGTCGCAAACTCTGATCGGCTAGTGATAAAGACGATAATAGCG | <i>comE</i> mutagenesis reverse primer: GTTAGAGTCGCAAACTCTGATCGGCTAGTGATAAAGACGATAATAGCG | ||
Line 111: | Line 110: | ||
<br><br> | <br><br> | ||
- | <u><b>ComE<sup>D58E</sup></b><u> | + | <u><b>ComE<sup>D58E</sup></b></u> |
<br> | <br> | ||
The phosphorylmimetic comE mutant, comE<sup>D58E</sup> was sent by Martin et al., the pKHS plasmid. pKHS is an expression vector, which contains a T7 promoter and kanamycin | The phosphorylmimetic comE mutant, comE<sup>D58E</sup> was sent by Martin et al., the pKHS plasmid. pKHS is an expression vector, which contains a T7 promoter and kanamycin |
Revision as of 11:59, 17 October 2014
Pneumosensor Results
Detection Module
Overview
The two-component regulatory system in S. pneumoniae, consisting of the receptor ComD and its response regulator ComE was to be used in detecting the autoinducer molecule, competence-stimulating peptide (CSP) and so detect S. pneumoniae populations correspondingly. The activity of the comCDE operon promoter (PcomCDE) is induced by phosphorylated ComE. In order to facilitate characterization of PcomCDE, we use the phosphorylmimetic ComE mutant, ComED58E, in the pKHS plasmid which was kindly sent to us by Martin et al., from the Université de Toulouse. The characterization of PcomCDE is for the purpose of linkage to the σx promoters module by regulating expression of the sigma factor. |
Construct
ComD
|
S. pneumoniae σx Promoters Module
Overview
The activity of Com-Box promoter is turned on by a specific sigma factor that is produced by a regulatory gene comX. The σx will bind to the Com-Box promoter region and activate gene expression. σx serve as an inducer with high specificity as it binds to an area of several specific 8 base pairs (TACGAATA) on the Com-Box promoter. This σx-Com-Box system could be used as a highly specific reporting system in our S.pneumonia detection platform.
However in nature, ComX protein will be degraded by ClpXP enzyme which exists in E. coli and some other bacteria. Hence, to ensure the induction of Com-Box promoter by σx, ComW protein is needed as it functions to protect σx from being degraded by ClpXP. ComW protein will be degraded instead, increasing the amount of σx produced.
|
Construct |
σx Generator construct (BBa_K1379006) and comW construct
Backbone pSB1C3 was used for σx generator construct and comW construct. comX gene / comW gene were fused with BBa_K880005 which contains a constitutive promoter (BBa_J23100) and strong RBS (BBa_B0034). The purpose of this strong constitutive promoter and strong RBS is to unsure the large production of σx and ComW protein throughout time. Then, a double terminator (BBa_B0015) is fused with the promoter, RBS, and comX. BBa_K880005 and BBa_B0015 were obtained from 2014 iGEM distribution kit.
|
PcelA (BBa_ K1379002) and PcomFA (BBa_ K1379003) construct
Backbone pSB1C3 was used for PcelA and PcomFA construct. PcelA / PcomFA gene was fused with BBa_E0240, which contains a medium RBS (BBa_B0034), GFP (BBa_E0040) and double terminator (BBa_B0015). The purpose of this GFP generator is to indicate the functionality of PcelA and PcomFA in the presence and absence of σx. BBa_E0240 was obtained from 2014 iGEM distribution kit. The bacterial strain of E. coli used is DH10B.
|
Assembly and Characterization
Assembly |
Home |
Pneumosensor |
Riboregulator |
Human Practice |
Team |
WetLab |
Achievement |