Team:Bielefeld-CeBiTec/Results/CO2-fixation

From 2014.igem.org

(Difference between revisions)
Line 39: Line 39:
  <div id="text">
  <div id="text">
   <p>
   <p>
-
The particular aim of the second module is to realize the carbon dioxide fiaxtion in <i>E. coli</i>. For this approach all items, like the Sedoheptulose-1,7-Bisphpospahtase [link], the Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and the mechanism of carbon dioxide fixation a tested separetly. The next step would be the otpimization of the carbon dioxide fixation in the presence of oxygen by using an anerobic microcompartment, called the carboxysome. Here w of the Calvin cycle a first  The second module aims to change <i>E. coli</i> in a way that it binds carbon dioxide. This changes this bacterium from heterotroph to autotroph. To achieve this we want to establish the Calvin-cycle. <i>E. coli</i> has all enzymes for the Calvin-cycle except of three.<br>
+
The particular aim of the second module is to realize the carbon dioxide fiaxtion in <i>E. coli</i>. For this approach all items, like the Sedoheptulose-1,7-Bisphpospahtase [link], the Ribulose 1,5-bisphosphate carboxylase/oxygenase [link] (RuBisCO) and the mechanism of carbon dioxide fixation [link] a tested separetly in various approaches. For the optimization of the carbon dioxide fixation under aerobic growth conditions we investigate the anerobic microcompartment from <i>Halothiobacillus neapolitnaus</i>, called the carboxysome [link].<br>
<center>
<center>
<div class="element" style="margin:10px; padding:10px; text-align:center; width:450px">  
<div class="element" style="margin:10px; padding:10px; text-align:center; width:450px">  
       <a href="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" width="450px"></a><br>
       <a href="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/5/54/Bielefeld-CeBiTec_2014-10-11_Carboxy_weiss_wiki.png" width="450px"></a><br>
-
<font size="1" style="text-align:center;"><b>Figure1:</b> Missing enzymes in Calvin cycle</font>
+
<font size="2" style="text-align:center;"><b>Figure1:</b> Schematic representation of the calvin cylce. The reaction shwon in green can be realized by enzymes that naturally exist in <i>E. coli</i>, while the red one need to be expressed heterologous to fullfill the whole calvin cycle in <i>E. coli</i>.</font>
</div>
</div>
</center>
</center>
Line 50: Line 50:
   </p>
   </p>
  </div>
  </div>
-
</div>
 
-
 
-
 
-
<div class="element" style="margin:10px; padding:10px">
 
-
<div id="text">
 
-
<a href="https://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Journal/CO2-fixation">Here</a> you will find information about the execution of our experiments.
 
-
</div>
 
</div>
</div>

Revision as of 11:14, 17 October 2014


Module II - Carbon Dioxide (CO2) Fixation

The particular aim of the second module is to realize the carbon dioxide fiaxtion in E. coli. For this approach all items, like the Sedoheptulose-1,7-Bisphpospahtase [link], the Ribulose 1,5-bisphosphate carboxylase/oxygenase [link] (RuBisCO) and the mechanism of carbon dioxide fixation [link] a tested separetly in various approaches. For the optimization of the carbon dioxide fixation under aerobic growth conditions we investigate the anerobic microcompartment from Halothiobacillus neapolitnaus, called the carboxysome [link].


Figure1: Schematic representation of the calvin cylce. The reaction shwon in green can be realized by enzymes that naturally exist in E. coli, while the red one need to be expressed heterologous to fullfill the whole calvin cycle in E. coli.
The different results for all three enzymes are mentioned in the Calvin-cycle section. One important step for the carbon dioxide fixation is the RuBisCO (Ribulose 1,5-bisphosphate carboxylase/oxygenase). We decided to transform DNA sequences into E. coli which encode the carboxysome. Due to its special properties this microcompartiment is very usefull for the carbon dioxide fixation.