Team:LMU-Munich/Project/Modeling

From 2014.igem.org

(Difference between revisions)
(Suicide-Switch Part1)
(pictures suicide-model)
Line 11: Line 11:
== Suicide Switch ==
== Suicide Switch ==
-
For safety issues we want bakillus to vanish after he fulfilled his purpose. For this task we want our BaKillus to stop producing resistancy proteins against his own toxicity. (see: Suicide Switch) However, as simple as this idea might sound in theory, the implementation will require very precise fine-tuning.  
+
For safety issues we want bakillus to vanish after he fulfilled his purpose. For this task we want our BaKillus to stop producing resistancy proteins against his own toxicity. (see: [[https://2014.igem.org/Team:LMU-Munich/Project/Bakillus#suicide|Suicide Switch]]) However, as simple as this idea might sound in theory, the implementation will require very precise fine-tuning.  
To assess the applicability of this approach we first need to understand the underlying dynamics of the system. Consequentely we chose to simulate the process in silico.  
To assess the applicability of this approach we first need to understand the underlying dynamics of the system. Consequentely we chose to simulate the process in silico.  
We deployed following differential equations for our model:
We deployed following differential equations for our model:
-
[[File:LMU14_Equations1.png]]
+
[[File:LMU14_Equations1.png|center]]
 +
=== Fixed parameters ===
 +
 +
In a first evaluation, the variation of following parameters were figured out to cause only insignificant variation of the model's fitness. Therefore they were keept at these specified values for all subsequent simulations:
 +
<code>
 +
Degradation Rate ('''g1''') of mRNA:
 +
12 molecules per hour
 +
Degradation Rate ('''g2''') of Proteins:
 +
1 molecule per hour
 +
Transcription Rate ('''k0''') of Sdp:
 +
7.2 per hour
 +
Translation Rate ('''k1''') of SdpI & SdpABC:
 +
10 per hour
 +
</code>
=== Fitness (W) ===
=== Fitness (W) ===
Line 24: Line 37:
For analysis of the impact of each parameters, we've used a function to determine the fitness '''W''' of the model. The fitness describes the integral of the surplus of toxic cannibalism proteins over the proprietary antidote. Therefore, a successful suicide equals a high fitness of the model. This means plotting W against one parameter, while statistically bruteforcing versatile value combinations of the remaining parameters, one can see how the parameter effects the quality of the model. That way we can figure out what options we have to manipulate our suicide system to adjust it.  
For analysis of the impact of each parameters, we've used a function to determine the fitness '''W''' of the model. The fitness describes the integral of the surplus of toxic cannibalism proteins over the proprietary antidote. Therefore, a successful suicide equals a high fitness of the model. This means plotting W against one parameter, while statistically bruteforcing versatile value combinations of the remaining parameters, one can see how the parameter effects the quality of the model. That way we can figure out what options we have to manipulate our suicide system to adjust it.  
-
 
-
=== Fixed parameters ===
 
-
 
-
In a first evaluation, the variation of following parameters were figured out to cause only insignificant variation of the model's fitness. Therefore they were keept at these specified values for all subsequent simulations:
 
-
 
-
Degradation Rate ('''g1''') of mRNA: 12 molecules per hour
 
-
Degradation Rate ('''g2''') of Proteins: 1 molecule per hour
 
-
Transcription Rate ('''k0''') of Sdp: 7.2 per hour
 
-
Translation Rate ('''k1''') of SdpI & SdpABC: 10 per hour
 
Line 85: Line 89:
-
<gallery>
+
<gallery mode=nolines>
  File:LMU14_model_1.jpg
  File:LMU14_model_1.jpg
  File:LMU14_model_2.jpg
  File:LMU14_model_2.jpg
Line 98: Line 102:
As we can see.....
As we can see.....
-
 

Revision as of 10:48, 17 October 2014

 

Modeling

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.


Suicide Switch

For safety issues we want bakillus to vanish after he fulfilled his purpose. For this task we want our BaKillus to stop producing resistancy proteins against his own toxicity. (see: [Switch]) However, as simple as this idea might sound in theory, the implementation will require very precise fine-tuning.

To assess the applicability of this approach we first need to understand the underlying dynamics of the system. Consequentely we chose to simulate the process in silico. We deployed following differential equations for our model:

LMU14 Equations1.png

Fixed parameters

In a first evaluation, the variation of following parameters were figured out to cause only insignificant variation of the model's fitness. Therefore they were keept at these specified values for all subsequent simulations:

Degradation Rate (g1) of mRNA: 
12 molecules per hour
Degradation Rate (g2) of Proteins: 
1 molecule per hour
Transcription Rate (k0) of Sdp: 
7.2 per hour
Translation Rate (k1) of SdpI & SdpABC: 
10 per hour

Fitness (W)

For analysis of the impact of each parameters, we've used a function to determine the fitness W of the model. The fitness describes the integral of the surplus of toxic cannibalism proteins over the proprietary antidote. Therefore, a successful suicide equals a high fitness of the model. This means plotting W against one parameter, while statistically bruteforcing versatile value combinations of the remaining parameters, one can see how the parameter effects the quality of the model. That way we can figure out what options we have to manipulate our suicide system to adjust it.


This is the script we used to analyse the model on MATLAB:

% par0 = lhsdesign(10000,12); 
par0 = rand(100000,12);
par = 10.^(4*par0 - 2); % Coveres range from 0.01 to 100

par(:,3) =12; % g1
par(:,5) =1; % g2
par(:,2) =0.12*60; % k0_sdp
par(:,4) =10; % k1_sdp

tout = linspace(0,10,100);
tic 
for j = 1:size(par,1)
   [~,~,x,y] = simulate_RRE_cannibalism(tout,par(j,:));
    %figure
    %plot(tout,y)
    %legend('p_{p_sdpABC}','p_{p_sdpI}')
   
   W(j) = sum(y(:,1)-y(:,2));
end
toc

parname={'C0_Pqs','k0_sdp','g1','k1_sdp','g2','C0_p_sdpI', ...
'C0_fsrA','k0_SiAlt1','k1_SiAlt1','C0_SiAlt1','k0_fsrA','k1_fsrA'};
 
for k = [1,6,7,8,9,10,11,12]
  figure
  scatter(par(:,k),W',10,'filled')
  hold on

  [xx,ind]=sort(par(:,k));
  r = ksr(log10(xx),W(ind));
 
  plot(10.^r.x,smooth(r.f,10),'k-','LineWidth',5)
  set(gca,'Yscale','lin')
  set(gca,'Xscale','log')
  xlabel(parname{k})
  ylabel('W')
  saveas(gcf,['parameter_' parname{k}]);
  print('-depsc2','-r300',['parameter_' parname{k}])
end


Results

The graphs show the statistical fitness W of the model plotted against each considered parameter. The black line resembles the average.



As we can see.....



Hi there!

Welcome to our Wiki! I'm BaKillus, the pathogen-hunting microbe, and I'll guide you on this tour through our project. If you want to learn more about a specific step, you can simply close the tour and come back to it anytime you like. So let's start!

What's the problem?

First of all, what am I doing here? The problem is, pathogenic bacteria all around the world are becoming more and more resistant against antimicrobial drugs. One major reason for the trend is the inappropriate use of drugs. With my BaKillus super powers, I want to reduce this misuse and thus do my part to save global health.

Sensing of pathogens

To combat the pathogenic bacteria, I simply eavesdrop on their communication. Bacteria talk with each other via quorum sensing systems, which I use to detect them and trigger my responses.

Adhesion

The more specific and effective I can use my powers, the lower the danger is of provoking new resistance development. So I catch pathogens whenever I get hold of them and stick to them until my work is done.

Killing

Talking about my work - killing pathogens is finally what I am made for. In response to quorum sensing molecules of the pathogens, I export a range of antimicrobial substances leading to dissipation of biofilms and the killing of the targeted bacteria.

Suicide switch

When the job is done and all the bad guys are finished, you don't need a super hero anymore. So after fulfilling my work I say goodbye to the world by activating my suicide switch.

Application

Of course I'm not only a fictional hero, but a very real one. In two different prototypes, I could be used for diagnosis or treatment of pathogen-caused diseases. However, there is still a whole lot of regulational and economical questions that have to be answered before.

See you!

So now you know my short story - and it is time for me to return to my fight for a safer world. Feel free to take a closer look on my super powers, the process of my development or the plans for a medical application.