Team:ETH Zurich/modeling/int

From 2014.igem.org

(Difference between revisions)
m (Characterization of the integrase DNA-binding reaction)
m (Parameter fitting)
Line 272: Line 272:
* k<sub>mRNA<sub>Bxb1</sub></sub> is of the order of magnitude 10<sup>-1</sup> min<sup>-1</sup> mRNA<sup>-1</sup>. We estimated to be a low value because the starting codon of Bxb1 is GTG (and not ATG) and this parameter also takes into account folding time.
* k<sub>mRNA<sub>Bxb1</sub></sub> is of the order of magnitude 10<sup>-1</sup> min<sup>-1</sup> mRNA<sup>-1</sup>. We estimated to be a low value because the starting codon of Bxb1 is GTG (and not ATG) and this parameter also takes into account folding time.
-
Thus, K<sub>DBxb1</sub>'s order of magnitude is 10<sup>-6</sup> nM. The interpretation of this dissociation rate constant is that the dimerization reaction is really specific, as it can be expected for integrases.
+
Thus, '''K<sub>DBxb1</sub>'s order of magnitude is 10<sup>-6</sup> nM'''. The interpretation of this dissociation rate constant is that the dimerization reaction is really specific, as it can be expected for integrases.
By assuming that k<sub>DBxb1</sub>, the rate of formation of D<sub>Bxb1</sub>, is not rate limiting and fixing it to 1, we find that k<sub>-DBxb1</sub>'s order of magnitude is 10<sup>-6</sup> nM.
By assuming that k<sub>DBxb1</sub>, the rate of formation of D<sub>Bxb1</sub>, is not rate limiting and fixing it to 1, we find that k<sub>-DBxb1</sub>'s order of magnitude is 10<sup>-6</sup> nM.

Revision as of 05:33, 17 October 2014

iGEM ETH Zurich 2014