Team:Cornell/project/wetlab/futurework
From 2014.igem.org
(Difference between revisions)
Line 18: | Line 18: | ||
<div class="col-md-12 col-xs-18"> | <div class="col-md-12 col-xs-18"> | ||
We also hope to continue working on synthesizing a reporter system. In order to detect the saturation of metallothionein sequestering cultures, we plan on using <i>amilCP</i> behind the nickel/cobalt activated promoter <i>Prcn</i> and the mercury activated promoter <i>PmerT</i>. It would be useful to place <i>amilCP</i> behind a lead activated promoter. This system should be incorporated into the BioBrick backbone and transformed into <i>E. coli</i> reporter cultures. These would theoretically be placed into a second hollow fiber reactor that would be connected downstream to the transporter-metallothionein hollow fiber reactor. Effluent water carrying unsequestered metal ions would induce the reporter culture to express <i>amilCP</i>, producing a gradient of blue. We can then test water samples with different heavy metal concentrations to correlate effluent levels against the cultures’ color gradient. | We also hope to continue working on synthesizing a reporter system. In order to detect the saturation of metallothionein sequestering cultures, we plan on using <i>amilCP</i> behind the nickel/cobalt activated promoter <i>Prcn</i> and the mercury activated promoter <i>PmerT</i>. It would be useful to place <i>amilCP</i> behind a lead activated promoter. This system should be incorporated into the BioBrick backbone and transformed into <i>E. coli</i> reporter cultures. These would theoretically be placed into a second hollow fiber reactor that would be connected downstream to the transporter-metallothionein hollow fiber reactor. Effluent water carrying unsequestered metal ions would induce the reporter culture to express <i>amilCP</i>, producing a gradient of blue. We can then test water samples with different heavy metal concentrations to correlate effluent levels against the cultures’ color gradient. | ||
+ | |||
+ | |||
+ | |||
+ | |||
<br><br> | <br><br> | ||
</div> | </div> |
Revision as of 01:35, 16 October 2014
Wet Lab
Future Work
In the future, we hope to continue working with the merT, merP, CBP4, and nixA heavy metal transport genes by incorporating them upstream of the metallothionein gene GST-YMT. Once each heavy metal transport gene is combined with the metallothionein gene, we can transform the high copy bacterial plasmid into E. coli. We will then be able to conduct a series of growth assays between our engineered bacteria and E. coli in the presence of heavy metal contaminated water.
We also hope to continue working on synthesizing a reporter system. In order to detect the saturation of metallothionein sequestering cultures, we plan on using amilCP behind the nickel/cobalt activated promoter Prcn and the mercury activated promoter PmerT. It would be useful to place amilCP behind a lead activated promoter. This system should be incorporated into the BioBrick backbone and transformed into E. coli reporter cultures. These would theoretically be placed into a second hollow fiber reactor that would be connected downstream to the transporter-metallothionein hollow fiber reactor. Effluent water carrying unsequestered metal ions would induce the reporter culture to express amilCP, producing a gradient of blue. We can then test water samples with different heavy metal concentrations to correlate effluent levels against the cultures’ color gradient.