Team:UCL/Science/Bioprocessing
From 2014.igem.org
Joyfaucher (Talk | contribs) |
Joyfaucher (Talk | contribs) |
||
Line 26: | Line 26: | ||
<ul class="tabs"> | <ul class="tabs"> | ||
<li class="selected"><a href="#view1">Basics</a></li> | <li class="selected"><a href="#view1">Basics</a></li> | ||
- | <li class=""><a href="#view2"> | + | <li class=""><a href="#view2">Design</a></li> |
- | <li class=""><a href="#view3"> | + | <li class=""><a href="#view3">Implementation</a></li> |
<li class=""><a href="#view4">Commercial</a></li> | <li class=""><a href="#view4">Commercial</a></li> | ||
<li class=""><a href="#view5">Experiments</a></li> | <li class=""><a href="#view5">Experiments</a></li> | ||
Line 80: | Line 80: | ||
<!--This is the second section--> | <!--This is the second section--> | ||
+ | |||
+ | <div style="display: none;" id="view2"> | ||
+ | |||
+ | <div class="textTitle"><h4>Overview</h4></div> | ||
+ | <!-- This is the main text. Anything in a <p>TEXT</p> is a paragraph and will be spaced appropriately--> | ||
+ | <p>In the textile industry today, the global production of dyestuff amounts to over millions of tonnes per year. Azodyes represent two thirds of this value, a majority of which find their way to wastewater effluent streams. Characterized by the presence of one or more azo group (more on chemistry), this type of organic colorant is also found in cosmetics, pharmaceuticals and food industries. While the desirable properties of azodyes i.e. chemical stability, high molar extinction coefficient and fastness make them a dye-class of choice, their widespread use in countries such as India and China make them a dye to die for—literally. This is because, in parallel to being aesthetically intrusive to ecosystems, azodye breakdown products have been found to be mutagenic and carcinogenic. With such a high worldwide consumption, the benefits in developing and integrating a sustainable strategy for dealing with such effluent streams is clear. It is worth to note that the ‘azodye problem’ is exacerbated by the high costs, both financial (economic) and environmental, of current physio-chemical and biological methods of treatment (more on current treatment). This year, we are looking into the processing options that are relevant to tackling the problem of azodye discharges. In order to assess the feasibility and determine key engineering parameters for each option, the most important dyestuff sector will be used as a case study: textiles and dyeing industry.</p><br><br> | ||
+ | |||
+ | <!-- div is a divisor tag that just separates content. This class makes the paragraph in it black--> | ||
+ | <div class="SCJMFHIGHLIGHT"> | ||
+ | <p> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/7/72/Current_process.png" style="float:right;margin:0 0 0 10px;" width="50%"> | ||
+ | <b>Case study sheet 1: treatment strategy for cotton textile mill wastes</b> | ||
+ | <br> | ||
+ | In their investigation of textile processing technology, both conventional and novel, Babu et al. have emphasized the importance of waste minimization in terms of pollution load and production costs. | ||
+ | </p> | ||
+ | </div> | ||
+ | |||
+ | <h3>Industrial Consultation</h3> | ||
+ | |||
+ | <p>A major part of our project involved engaging with key industrial experts to better understand their wants and needs. We identified the pigment manufacturing and waste water disposal sectors as the two major players who would benefit from our work. By meeting with these leading corporations we have been able to tune our research towards the assenbly of a process that would be most attractive for industry to utilise.</p> | ||
+ | <br> | ||
+ | |||
+ | <h4>Meeting with ETAD - Ecological and Toxicological Association of Dye and Pigment Manufacturers</h4> | ||
+ | <p>ETAD - an association based in Basel represents over 35 different pigment and dyeing corporations internationally, coordinating a group initiative to limit adverse effects on health and the environment by their industry.Present at the meeting were Walter Hoffman – Director of ETAD, Dr Stefan Ehrenberg - Pigment Manufacturing R&D at Bezema, Georg Roentgen – Director of R&D Colours and Textile Effects at Huntsman.</p> | ||
+ | <p>The main reasons for this meeting were: | ||
+ | <li>To encourage industry to consider synthetic biology as a realistic, viable option when looking to reduce the toxicity of their process. | ||
+ | <li>Discuss the major concerns and problem areas the dyeing and pigments industry are currently facing.</p> | ||
+ | <img width="25%" style="float:right;margin:0 0 0 10px;" src="https://static.igem.org/mediawiki/2014/4/41/1924384_10154546138020564_6502621618718289701_n.jpg"></img> | ||
+ | <br> | ||
+ | |||
+ | <h4>Dye Houses vs Dye Synthesis Waste</h4> | ||
+ | |||
+ | <p>The meeting with ETAD raised a number of points for our project. Mr Roentgen questioned how the survival of our bacterial cell would be effected in dyehouse waste as opposed to dye synthesis plant waste. The waste from a dyehouse is a complex mix of azo dyes at approximately 1%-5% concentration in a high salt concentration with the presence of metals copper and chromium. This a harsh environment compared with the waste of a dye synthesis plant, generally containing one or two azo dyes in a simple mixture at 10% concentration.</p> | ||
+ | <br> | ||
+ | <p>This is new information for our project and has greatly influenced us to direct our research towards optimising remediation of dye synthesis waste water. Another advantage of remediation of dye synthesis plant waste water is that the low variety of azo dyes in each batch mixture will make filtration of valuable products a much easier and viable process, enhancing the economic feasibility of our device.</p> | ||
+ | <br> | ||
+ | <h4>Sulphonated Azo Dyes</h4> | ||
+ | <p>The current trend in the textile industry is to reduce the volume of water consumed, leading to a greater use of more soluble dyes. For a dye to be more soluble it must be more polar, as such, many of these soluble dyes have sulfonated groups. The sulphur atom has a electron withdrawing effect making reduction of the azo bond difficult, the industry are finding chemical processes to degrade these dyes to be ineffective. </p> | ||
+ | <p>We feel we can offer an alternative since ..lignin peroxidase…. change this is known to be effective working on azo bonds with sulphur group.</p> | ||
+ | <h4>Conclusions</h4> | ||
+ | <p>Overall the meeting was a great success in guiding our project towards an industrial relevant direction. Running through our presentation highlighted a number of changes needed before the jamboree, specifically putting more emphasis on the novelty and innovation of our project. Ensuring our project delivers a solution that is conscious of the needs of the industry is extremely important to us, meetings such as these are invaluable to the progression of our work.</p> | ||
+ | </div> | ||
+ | |||
+ | <!--- This is the third section ---> | ||
<div style="display: none;" id="view3"> | <div style="display: none;" id="view3"> | ||
Line 142: | Line 186: | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
</div> | </div> | ||
Revision as of 15:20, 14 October 2014
Our Design Process
We will use rapid polymer prototyping techniques to generate microfluidic chips that will allow us to test our reaction and aid in the construction of a realistic bioprocess, which can be successfully scaled-up for industrial use. As we optimise and change our bioprocess, we can also quickly design new microfluidic chips that can mimic its development on a micro-scale. For example, it is our goal to integrate multiple downstream steps, such as chromatography, in order to isolate potential useful products. Demonstrating this in a microfluidic system is less time-consuming and far more cost effective than doing so at a larger scale.
For our microfluidic bioreactor, we will be using a magnetic free floating bar as our mixing system. This is an effective method of mixing at a microfluidic scale, as demonstrated in the video on the right. This video is of a microfluidic chemostat bioreactor designed by Davies et al. 2014 UCL, using a free-floating bar to mix two dyes.
Above are some examples of the microfluidics devices developed by our team for use in the lab at the UCL ACBE. The devices are initially designed using AutoCAD (2D and 3D computer-aided design software), once the designs are finalised they can be 3D-printed using the facilities provided by the UCL Institute of Making and UCL ACBE; allowing our bioprocess and laboratory team to experiment and improve designs.
An example of one of our microfluidic devices designed on AutoCAD can be downloaded here. This device utilises the basic concept of mixing the cells and dyes, producing a single output stream; much alike to the bioprocessing concept. During the course of designing the microfluidic device, several key considerations must be taken into account: ability to withstand high pressure without leakage; materials of construction to be inert and transparent; size constraints of inlet and outlet piping; ability to accurately 3D-print the device.