Team:HZAU-China/Application

From 2014.igem.org

(Difference between revisions)
(Created page with "<!DOCTYPE html> <html> <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en"> <![endif]--> <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8" lang="en"> <![endif]...")
Line 220: Line 220:
<section id="pagetitle-wrapper">
<section id="pagetitle-wrapper">
     <div class="pagetitle-content">     
     <div class="pagetitle-content">     
-
     <h2>Output module</h2>   
+
     <h2>Application</h2>   
     </div>
     </div>
</section>
</section>
Line 231: Line 231:
         <li><a href="index.html">Home</a></li>
         <li><a href="index.html">Home</a></li>
             <li><a href="#">Project</a></li>
             <li><a href="#">Project</a></li>
-
    <li><a href="#">Output module</a></li>
+
    <li><a href="#">Application</a></li>
         </ul>
         </ul>
     </div>
     </div>
Line 242: Line 242:
         <div class="eleven columns">  
         <div class="eleven columns">  
         <div class="offset-by-one columns">
         <div class="offset-by-one columns">
-
               <p class="highlighttext">In the first stage, the output module is the fluorescent indicator that can monitor the real-time processes of our system. Once its function is confirmed, we can use other functional parts as output to solve real world problems.</p>
+
<h5>Multiple functions integration</h5>
 +
               <p class="highlighttext">Multiple functions integration is the general goal we want to achieve. As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior. For this reason, we increase the complexity of the system by reusing the exist parts instead of addition of new parts. Our design allow the cells to run different functions at different time and it will not give extra burden to cells when a function is unnecessary.</p>
-
<h5>RNA level fluorescence</h5>
+
<h5>Organism development</h5>
-
               <p class="highlighttext">Beside fluorescent proteins, we try to use an RNA-fluorophore complex (Paige et al., 2011) to monitor the real-time processes. The complex contains RNA aptamers and some corresponding fluorophores. We synthesized the fluorophore 3,5-dimethoxy-4- hydroxybenzylidene imidazolinone (DHMBI), because several aptamers were identified that exhibited markedly different spectral properties when they bound to DHMBI. We also synthesized the 13-2min sequence, one of the aptamers that can interact with DHMBI, with a modified tRNA scaffold, which can stabilized the structure.</p>
+
               <p class="highlighttext">Many researches understand what orchestrates epigenomic changes by Waddington’s model of epigenetic determination of development (Fig. 1) (Mohammad and Baylin, 2010). From a dynamic view, the organism development is like jumping among different attractors. Once the cell falls into a stable steady state, it will be very hard to jump out. Many motifs in developmental network like mutual inhibition and double-positive feedback loop exhibit irreversibility unless the environment has a big change. If the gene circuit that decides the cell fate were rewirable, we could easily reprogram the cell.</p>
<img src=""  width="700px" class="img-center"/>
<img src=""  width="700px" class="img-center"/>
-
<p class="figuretext">Figure 1: our resulting image under the fluorescent microscope</p>
+
<p class="figuretext">Figure 1: Depiction of potential cell signaling in Waddington's model of epigenetic determination of development</p>
 +
 
 +
<h5>Living therapeutics</h5>
 +
<p class="highlighttext">The tumor suppressor p53 can induce cell cycle arrest or apoptosis according to degree of DNA damage. It was reported that p53 and its downstream targets applied an oscillation mode to repair DNA damage and chose a bistability mode to trigger apoptosis once the damage cannot be fixed by oscillation mode (Zhang et al., 2011). These functions were achieved by a very complex systems (Fig. 2)</p>
 +
<img src=""  width="700px" class="img-center"/>
 +
<p class="figuretext">Figure 2: A complex mechanism described in previous study</p>
 +
 
 +
<p class="highlighttext">In our design, we can achieve these functions by using only three genes and rewiring their regulatory pathway. We can construct an oscillation into the therapeutic bacterium that colonizes a niche in the human microbiome to maintain homeostasis. And once the the equilibrium was broken, the oscillation will be rewired to be a switch used for next decision.</p>
 +
 
 +
<h5>Environment improvement</h5>
 +
<p class="highlighttext">Some environment projects in synthetic biology utilized an event trigger to keep expressing some special proteins to tackle the environmental problem. These systems often contain a positive feedback loop module that can memorize the received signal and activate the downstream functional protein. After the problem is handled, we don’t need the positive feedback module anymore, but it is difficult to stop this module. In this case, we could rewire the system rather than kill all these meritorious cells. The positive feedback module can be rewired to be a negative feedback module, and we can use it to maintain the lower steady state or control the population of the engineered cells. Once the environmental problem recurs, we rewired it to be a positive feedback one again.</p>
<h5>References</h5>
<h5>References</h5>
-
<p class="highlighttext">Paige, J. S., Wu, K. Y., & Jaffrey, S. R. (2011). RNA mimics of green fluorescent protein. Science, 333(6042), 642-646.</p>
+
<p class="highlighttext">Mohammad, H. P., & Baylin, S. B. (2010). Linking cell signaling and the epigenetic machinery. Nature biotechnology, 28(10), 1033-1038.</p>
 +
<p class="highlighttext">Zhang, X. P., Liu, F., & Wang, W. (2011). Two-phase dynamics of p53 in the DNA damage response. Proceedings of the National Academy of Sciences,108(22), 8990-8995.</p>
 +
 
             <div class="clear"></div>
             <div class="clear"></div>
             <div class="divider"></div>
             <div class="divider"></div>

Revision as of 02:36, 14 October 2014

<!DOCTYPE html> 2014HZAU-China

Application

Multiple functions integration

Multiple functions integration is the general goal we want to achieve. As the number of system components grows, it becomes increasingly difficult to coordinate component inputs and outputs to produce the overall desired behavior. For this reason, we increase the complexity of the system by reusing the exist parts instead of addition of new parts. Our design allow the cells to run different functions at different time and it will not give extra burden to cells when a function is unnecessary.

Organism development

Many researches understand what orchestrates epigenomic changes by Waddington’s model of epigenetic determination of development (Fig. 1) (Mohammad and Baylin, 2010). From a dynamic view, the organism development is like jumping among different attractors. Once the cell falls into a stable steady state, it will be very hard to jump out. Many motifs in developmental network like mutual inhibition and double-positive feedback loop exhibit irreversibility unless the environment has a big change. If the gene circuit that decides the cell fate were rewirable, we could easily reprogram the cell.

Figure 1: Depiction of potential cell signaling in Waddington's model of epigenetic determination of development

Living therapeutics

The tumor suppressor p53 can induce cell cycle arrest or apoptosis according to degree of DNA damage. It was reported that p53 and its downstream targets applied an oscillation mode to repair DNA damage and chose a bistability mode to trigger apoptosis once the damage cannot be fixed by oscillation mode (Zhang et al., 2011). These functions were achieved by a very complex systems (Fig. 2)

Figure 2: A complex mechanism described in previous study

In our design, we can achieve these functions by using only three genes and rewiring their regulatory pathway. We can construct an oscillation into the therapeutic bacterium that colonizes a niche in the human microbiome to maintain homeostasis. And once the the equilibrium was broken, the oscillation will be rewired to be a switch used for next decision.

Environment improvement

Some environment projects in synthetic biology utilized an event trigger to keep expressing some special proteins to tackle the environmental problem. These systems often contain a positive feedback loop module that can memorize the received signal and activate the downstream functional protein. After the problem is handled, we don’t need the positive feedback module anymore, but it is difficult to stop this module. In this case, we could rewire the system rather than kill all these meritorious cells. The positive feedback module can be rewired to be a negative feedback module, and we can use it to maintain the lower steady state or control the population of the engineered cells. Once the environmental problem recurs, we rewired it to be a positive feedback one again.

References

Mohammad, H. P., & Baylin, S. B. (2010). Linking cell signaling and the epigenetic machinery. Nature biotechnology, 28(10), 1033-1038.

Zhang, X. P., Liu, F., & Wang, W. (2011). Two-phase dynamics of p53 in the DNA damage response. Proceedings of the National Academy of Sciences,108(22), 8990-8995.

Contacts
  • No.1, Shizishan Street, Hongshan District
    Wuhan, Hubei Province
    430070 P.R.China
  • Wechat : hzauigem
  • QQ Group : 313297095
  • YouTube : hzauigem