Team:UESTC-China/Design

From 2014.igem.org

(Difference between revisions)
Line 321: Line 321:
#logo{
#logo{
position: absolute;
position: absolute;
 +
background-image: url("https://static.igem.org/mediawiki/2014/9/99/NewLogo.png");
width: 154px;
width: 154px;
height: 147px;
height: 147px;
Line 399: Line 400:
<div id="header">
<div id="header">
<div id="emp">
<div id="emp">
-
<div id='logo'><a href="https://igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2014/d/da/NewLogo2.png"></a></div>
+
<div id='logo'><a href="https://igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2014/6/60/LiLogo.png"></a></div>
</div>
</div>
<div id="top-menu">
<div id="top-menu">
Line 499: Line 500:
<div align="center"><img src="https://static.igem.org/mediawiki/parts/5/5b/Hps1.jpg" style="width:50%"></div>
<div align="center"><img src="https://static.igem.org/mediawiki/parts/5/5b/Hps1.jpg" style="width:50%"></div>
<br/>
<br/>
-
<p><strong>Fig.1</strong>Schematic Representation of the Bacterial RuMP Pathway and the Plant Calvin-Benson Cycle. HPS and PHI denote 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase respectively. The abbreviations for several sugar phosphates are as follows: Ru5P, ribulose 5-phosphate; Hu6P, hexulose 6-phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate;RuBP,ribulose1,5-bisphosphate;3-PGA,3-phosphoglyce-rate. The other metabolites in the pathway are symbolized merely by their carbon numbers for simplicity.  
+
<p><strong>Fig.1</strong> Schematic Representation of the Bacterial RuMP Pathway and the Plant Calvin-Benson Cycle. HPS and PHI denote 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase respectively. The abbreviations for several sugar phosphates are as follows: Ru5P, ribulose 5-phosphate; Hu6P, hexulose 6-phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate;RuBP,ribulose1,5-bisphosphate;3-PGA,3-phosphoglyce-rate. The other metabolites in the pathway are symbolized merely by their carbon numbers for simplicity.  
<br/><br/>
<br/><br/>
</p>
</p>
Line 507: Line 508:
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
<br/>
<br/>
-
The glutathione-dependent formaldehyde dehydrogenase(FALDH) plays a key role in formaldehyde metabolism. FALDH is identified as an enzyme expressed in the cytoplasm. If we make FALDH over-express in plants, we can enhance plants’ tolerance to HCHO and increase the ability of plants to absorb HCHO. In the process of metabolism of formaldehyde, the formaldehyde may first combined with glutathione (GSH) to form the product of S-hydroxymethyl glutathione (HM-GSH), then FALDH in cytoplasm will catalyzes the formation of a S-formyl glutathione(F-GSH). Next the F-GSH will be hydrolyzed to formate(HCOOH) and GSH by S-formyl glutathione hydrolase (FGH).
+
The glutathione-dependent formaldehyde dehydrogenase(FALDH) plays a key role in formaldehyde metabolism(Fig.3). FALDH is identified as an enzyme expressed in the cytoplasm. If we make FALDH over-express in plants, we can enhance plants’ tolerance to HCHO and increase the ability of plants to absorb HCHO. In the process of metabolism of formaldehyde, the formaldehyde may first combined with glutathione (GSH) to form the product of S-hydroxymethyl glutathione (HM-GSH), then FALDH in cytoplasm will catalyzes the formation of a S-formyl glutathione(F-GSH). Next the F-GSH will be hydrolyzed to formate(HCOOH) and GSH by S-formyl glutathione hydrolase (FGH).
<br/><br/></p>
<br/><br/></p>
<div align="center"><img src="https://static.igem.org/mediawiki/parts/a/a7/Faldh.jpg" style="height:80%"></div>
<div align="center"><img src="https://static.igem.org/mediawiki/parts/a/a7/Faldh.jpg" style="height:80%"></div>
<br/>
<br/>
-
<p><strong>Fig.2</strong> A 13^C-NMR spectra from leaf extracts of transgenic tobacco plant treated with gaseous H^13 CHO for 2 h. b 13^C-NMR spectra from leaf extracts of WT treated with gaseous H^13 CHO for 2 h. c The extract from WT plant leaves without H^13 CHO treatment was used to monitor the background ^3 C-NMR signal levels
+
<p><strong>Fig.2</strong> A <sup>13</sup>C-NMR spectra from leaf extracts of transgenic tobacco plant treated with gaseous H^13 CHO for 2 h. b 13^C-NMR spectra from leaf extracts of WT treated with gaseous H^13 CHO for 2 h. c The extract from WT plant leaves without H^13 CHO treatment was used to monitor the background ^3 C-NMR signal levels
<br/><br/>
<br/><br/>
</p>
</p>
Line 522: Line 523:
<div align="center"><img src="https://static.igem.org/mediawiki/parts/a/a2/FDH.png" style="height:80%"></div>
<div align="center"><img src="https://static.igem.org/mediawiki/parts/a/a2/FDH.png" style="height:80%"></div>
<br/>
<br/>
-
<p><strong>Fig.3</strong>The abbreviations are as follows: CAT:catalase;FALDH:glutathione-dependent formaldehyde dehydrogena-se;FGH: S-formylglutathione hydrolase;FDH: Formate dehydrogenase;SYN: 10-Formyl-THF synthetase;FTD: 10-formyltetrahydrofolate dehydrogenase MTD: 5,10-methylenetetrahydrofolate dehydrogenase;MTC: 5,10-methylenetetrahydrofolate cyclohydrolase;SHMT: Serine hydroxymethyl transferase;GDC: Glycine decarboxylase complex;GXS: Glyoxalic acid synthetase;GXDC: Glyoxalic acid decarboxylase;HM-GSH: S-Hydroxymethyl glutathione;Forml-GSH: Formyl glutathione;SMM cycle: Methionine cycle.
+
<p><strong>Fig.3</strong> The abbreviations are as follows: CAT:catalase; FALDH:glutathione-dependent formaldehyde dehydrogena-se; FGH: S-formylglutathione hydrolase; FDH: Formate dehydrogenase; SYN: 10-Formyl-THF synthetase; FTD: 10-formyltetrahydrofolate dehydrogenase MTD: 5,10-methylenetetrahydrofolate dehydrogenase; MTC: 5,10-methylenetetrahydrofolate cyclohydrolase; SHMT: Serine hydroxymethyl transferase; GDC: Glycine decarboxylase complex; GXS: Glyoxalic acid synthetase; GXDC: Glyoxalic acid decarboxylase; HM-GSH: S-Hydroxymethyl glutathione; Forml-GSH: Formyl glutathione; SMM cycle: Methionine cycle.
<br/><br/>
<br/><br/>
</p>
</p>
Line 534: Line 535:
<div align="center"><img src="https://static.igem.org/mediawiki/2014/4/47/DdFig._4.png" style="width:563px;height:231px"></div>
<div align="center"><img src="https://static.igem.org/mediawiki/2014/4/47/DdFig._4.png" style="width:563px;height:231px"></div>
<br/>
<br/>
-
<p><strong>Fig.4</strong> Typical stomata in the epidermis illuminated with light for 30 min(Yin Wang,et al.2014).
+
<p><strong>Fig.4</strong> Typical stomata in the epidermis illuminated with light for 30 min(Yin Wang,et al.2014).
<br/><br/>
<br/><br/>
</p>
</p>
Line 547: Line 548:
<div align="center"><img src="https://static.igem.org/mediawiki/2014/b/b4/DdFig._5.png"></div>
<div align="center"><img src="https://static.igem.org/mediawiki/2014/b/b4/DdFig._5.png"></div>
<br/>
<br/>
-
<p><strong>Fig. 5</strong>Pollen germination of untransformed control plant and sterile transgenic plantsin vitro. Pollen grains were germinated on sucrose-boric acid medium and over 500 pollen grains were observed. a. Untansformed control plant pollen, b. Sterile pollen.Scale bar 25 μm (Pawan Shukla et al 2014).  
+
<p><strong>Fig.5</strong> Pollen germination of untransformed control plant and sterile transgenic plantsin vitro. Pollen grains were germinated on sucrose-boric acid medium and over 500 pollen grains were observed. a. Untansformed control plant pollen, b. Sterile pollen.Scale bar 25 μm (Pawan Shukla et al 2014).  
<br/><br/>
<br/><br/>
Line 554: Line 555:
<p style="color:#1b1b1b;">
<p style="color:#1b1b1b;">
<br/>
<br/>
-
To compare the ability of different gene products in the metabolism of formaldehyde, we constructed 11 gene expression vectors(Table 1 and Fig. 6), including two backbone vectors, six mono-gene expression vectors and three multi-gene expression vectors.  
+
To compare the ability of different gene products in the metabolism of formaldehyde, we constructed 11 gene expression vectors(Fig. 6), including two backbone vectors, six mono-gene expression vectors and three multi-gene expression vectors.  
<br/><br/></p>
<br/><br/></p>
<div align="center"><img src="https://static.igem.org/mediawiki/2014/0/0c/Dfig3.png" style="width:991px;height:391px"></div>
<div align="center"><img src="https://static.igem.org/mediawiki/2014/0/0c/Dfig3.png" style="width:991px;height:391px"></div>
<br/>
<br/>
-
<p><strong>Fig.6</strong> The procedure we constructed our vectors.  
+
<p><strong>Fig.6</strong> The procedure we constructed our vectors.  
<br/>
<br/>
piGEM001: P35S+P2A+T2A+F2A+nptII+T-HSP+T-35S+T-nos
piGEM001: P35S+P2A+T2A+F2A+nptII+T-HSP+T-35S+T-nos

Revision as of 10:56, 13 October 2014

UESTC-China