Team:Dundee/Implementation/introduction
From 2014.igem.org
Line 36: | Line 36: | ||
<div class="col-xs-12"> | <div class="col-xs-12"> | ||
- | <h2>How the L.A.S.S.O. fits into The Lung Ranger</h2> | + | <h2 id="0">How the L.A.S.S.O. fits into The Lung Ranger</h2> |
<p> | <p> | ||
The biological detection systems are potentially capable of detecting the presence of the bacterial species forming the focus of our project. However, it is unlikely to be capable of generating a quantifiable measure of bacterial load if used in isolation. Indeed, even a qualitative output from the systems would require it to be used in conjunction with sophisticated laboratory equipment. We therefore created the <b>L</b>ight <b>A</b>mplifying <b>S</b>ignal <b>S</b>ensing <b>O</b>bject (L.A.S.S.O.) - a device, when used in conjunction with the systems, is potentially capable of quantifying the bacterial load by utilising the biophotonics phenomena. The L.A.S.S.O. would allow for more frequent mobile monitoring of lung infections in CF patients, offering early detection and thus improved treatment, quality of life and ultimately, survival. | The biological detection systems are potentially capable of detecting the presence of the bacterial species forming the focus of our project. However, it is unlikely to be capable of generating a quantifiable measure of bacterial load if used in isolation. Indeed, even a qualitative output from the systems would require it to be used in conjunction with sophisticated laboratory equipment. We therefore created the <b>L</b>ight <b>A</b>mplifying <b>S</b>ignal <b>S</b>ensing <b>O</b>bject (L.A.S.S.O.) - a device, when used in conjunction with the systems, is potentially capable of quantifying the bacterial load by utilising the biophotonics phenomena. The L.A.S.S.O. would allow for more frequent mobile monitoring of lung infections in CF patients, offering early detection and thus improved treatment, quality of life and ultimately, survival. | ||
Line 46: | Line 46: | ||
<div class="col-xs-12"> | <div class="col-xs-12"> | ||
<hr> | <hr> | ||
- | <h2>Aims</h2> | + | <h2 id="1">Aims</h2> |
<p> | <p> | ||
The main aim was to design a relatively inexpensive device that would be easily used with little training, thus making it a device that both medical staff and patients alike would be comfortable in using. In the future, the device should be capable of being used away from the clinic. | The main aim was to design a relatively inexpensive device that would be easily used with little training, thus making it a device that both medical staff and patients alike would be comfortable in using. In the future, the device should be capable of being used away from the clinic. | ||
Line 61: | Line 61: | ||
<div class="col-xs-12"> | <div class="col-xs-12"> | ||
<hr> | <hr> | ||
- | <h2>Objectives</h2> | + | <h2 id="2">Objectives</h2> |
<p> | <p> | ||
<ul type="circle"> | <ul type="circle"> |
Revision as of 12:52, 12 October 2014
L.A.S.S.O.
Every good cowboy needs one
How the L.A.S.S.O. fits into The Lung Ranger
The biological detection systems are potentially capable of detecting the presence of the bacterial species forming the focus of our project. However, it is unlikely to be capable of generating a quantifiable measure of bacterial load if used in isolation. Indeed, even a qualitative output from the systems would require it to be used in conjunction with sophisticated laboratory equipment. We therefore created the Light Amplifying Signal Sensing Object (L.A.S.S.O.) - a device, when used in conjunction with the systems, is potentially capable of quantifying the bacterial load by utilising the biophotonics phenomena. The L.A.S.S.O. would allow for more frequent mobile monitoring of lung infections in CF patients, offering early detection and thus improved treatment, quality of life and ultimately, survival.
Aims
The main aim was to design a relatively inexpensive device that would be easily used with little training, thus making it a device that both medical staff and patients alike would be comfortable in using. In the future, the device should be capable of being used away from the clinic.
- To show people on the front line in the battle against CF lung disease (medics and patients) how the Dundee iGEM project can be used in the real world.
- The possibility of this having a lasting benefit, not just to provide much quicker diagnosis times, but ultimately giving control back to the patients .
- Building a bridge between synthetic biology and the people it can help by having patients and health care professionals be part of the design of the L.A.S.S.O
Objectives
- To build a device able to detect the low light levels produced by the E.coli and quantify this signal with known standards to calculate the amount of bacteria present.
- To design a computer application able to relay the amount of bacteria present to a downstream user (e.g. Doctor).
- To design a computer application which can simulate how the L.A.S.S.O. could be used in the real world - showing how information could be easily shared between patient and medical staff (automated, letting the technology do the work).