Team:Cornell/project/wetlab/nickel
From 2014.igem.org
(Difference between revisions)
Line 11: | Line 11: | ||
<div class="col-md-12 col-xs-18"> | <div class="col-md-12 col-xs-18"> | ||
<h1 style="margin-top: 0px;">Construct Design</h1> | <h1 style="margin-top: 0px;">Construct Design</h1> | ||
- | + | Because the metallothionein proteins that bind to the heavy metals are located within the <i>E. coli</i>, we have constructed BioBricks containing heavy metal transport proteins that will translocate surrounding heavy metals into the cell. The high-affinity nickel transport protein nixA, originating from the bacteria <i>Helicobacter pylori</i>, imports nearby Ni(2+) ions into the cell <sup>[1]</sup>. Normally used by <i>H. pylori</i> to allow for urease activity <sup>[2]</sup>, nixA also shows promise for purposes of bioaccumulation and remediation<sup>[3]</sup>. | |
+ | <br><br> | ||
+ | The first nickel BioBrick <a href=”http://parts.igem.org/Part:BBa_K1460003”>BBa_K1460003</a> consists of the Anderson promoter, the nixA gene, and a terminator, allowing for the constitutive expression of the nixA gene and the accumulation of nickel within the cell. The second nickel BioBrick <a href=”http://parts.igem.org/Part:BBa_K1460006”>BBaK1460006</a> was constructed by inserting our metallothionein construct, the T7 promoter and GST-YMT metallothionein gene, downstream of our first construct. This allows for the simultaneous constitutive expression of nixA for nickel uptake and accumulation and the induced expression of metallothioneins. As metallothoineins inhibit cell growth, utilizing inducible metallothionein expression permits the bacteria to adequately grow before producing metallothioneins. | ||
</div> | </div> | ||
</div> | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-xs-18"> | ||
+ | <div class="thumbnail"> | ||
+ | <div style="text-align:center"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/4/4f/Cornell_NixAc.png" alt="..." width="100%"> | ||
+ | <div class="caption"> | ||
+ | <div style="text-align:center"> | ||
+ | <h3>BBa_K1460007</h3> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-12 col-xs-18"> | <div class="col-md-12 col-xs-18"> | ||
<h1>Results</h1> | <h1>Results</h1> | ||
- | + | Cells successfully expressing CBP4 should be transporting more lead ions past the cell wall. This would lead to increased lead sensitivity. To test for lead sensitivity, <i>E.coli</i> BL21 and engineered BL21 with part BBa_K1460005 in the amp<sup>r</sup> plasmid pUC57 were grown for a 24 hour period in LB with 1 mM, .1 mM and .01 mM Pb. | |
</div> | </div> | ||
</div> | </div> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-xs-18"> | ||
+ | Part BBa_K1460005 in pUC57 was co-transformed with part <a href="https://2014.igem.org/Team:Cornell/project/wetlab/metallothionein">BBa_K1460001</a> (GST-YMT) in pSB1C3 and selected for with both ampicillin and chloramphenicol to effectively create the lead sequestration part BBa_K1460008. To test for sequestration efficiency, both BL21 and BL21 engineered with BBa_K1460001 and BBa_K1460005 were grown with LB + 0.1% Arabinose for 8 hours and then diluted by 1/2 with LB + 2 mM Pb for a final lead concentration of 1 mM. These cultures were grown for 8 more hours. The cells were then removed and supernatant was tested for lead concentration using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) with the help of Cornell's Nutrient Analysis Lab. Error bars in chart represent standard deviation of three biological replicates. | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-6 col-xs-9"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/b/bf/Cornell_final_lead_concentration.png" width="100%"> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-6 col-xs-9"> | ||
+ | <img src="https://static.igem.org/mediawiki/2014/5/57/Cornell_Lead_per_OD.png" width="100%"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-xs-18"> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-xs-18"> | ||
+ | dk;ladk'f;lsdalkjf;al | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-12 col-xs-18"> | <div class="col-md-12 col-xs-18"> |
Revision as of 02:32, 12 October 2014
Wet Lab
Construct Design
Because the metallothionein proteins that bind to the heavy metals are located within the E. coli, we have constructed BioBricks containing heavy metal transport proteins that will translocate surrounding heavy metals into the cell. The high-affinity nickel transport protein nixA, originating from the bacteria Helicobacter pylori, imports nearby Ni(2+) ions into the cell [1]. Normally used by H. pylori to allow for urease activity [2], nixA also shows promise for purposes of bioaccumulation and remediation[3].The first nickel BioBrick BBa_K1460003 consists of the Anderson promoter, the nixA gene, and a terminator, allowing for the constitutive expression of the nixA gene and the accumulation of nickel within the cell. The second nickel BioBrick BBaK1460006 was constructed by inserting our metallothionein construct, the T7 promoter and GST-YMT metallothionein gene, downstream of our first construct. This allows for the simultaneous constitutive expression of nixA for nickel uptake and accumulation and the induced expression of metallothioneins. As metallothoineins inhibit cell growth, utilizing inducible metallothionein expression permits the bacteria to adequately grow before producing metallothioneins.
Results
Cells successfully expressing CBP4 should be transporting more lead ions past the cell wall. This would lead to increased lead sensitivity. To test for lead sensitivity, E.coli BL21 and engineered BL21 with part BBa_K1460005 in the ampr plasmid pUC57 were grown for a 24 hour period in LB with 1 mM, .1 mM and .01 mM Pb.
Part BBa_K1460005 in pUC57 was co-transformed with part BBa_K1460001 (GST-YMT) in pSB1C3 and selected for with both ampicillin and chloramphenicol to effectively create the lead sequestration part BBa_K1460008. To test for sequestration efficiency, both BL21 and BL21 engineered with BBa_K1460001 and BBa_K1460005 were grown with LB + 0.1% Arabinose for 8 hours and then diluted by 1/2 with LB + 2 mM Pb for a final lead concentration of 1 mM. These cultures were grown for 8 more hours. The cells were then removed and supernatant was tested for lead concentration using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) with the help of Cornell's Nutrient Analysis Lab. Error bars in chart represent standard deviation of three biological replicates.
dk;ladk'f;lsdalkjf;al
References
- Ref 1
- Ref 2
- Ref 3