Team:UCL/Humans/Soci/2
From 2014.igem.org
Line 24: | Line 24: | ||
</ul> | </ul> | ||
<h4>The Governance Challenges of Synthetic Biology</h4> | <h4>The Governance Challenges of Synthetic Biology</h4> | ||
- | <br><p align=justify>What is often characteristic of new and emerging technologies and their associated governance measures is that they show a higher degree of scientific uncertainty, and appear to cross various borders. This is what Zhang et al. (2011) have pointed out to be especially true for synthetic biology as it puts an even stronger emphasis on these governance challenges for modern science. The main reasons for this is that, on the one hand, the uncertainty comes from the lack of predictability and awareness of increasing <i>non-knowing </i> with regard to the technology, and on the other hand, the cross-borderness related to various interconnecting aspects of synthetic biology (Zhang et al 2011). | + | <br><p align=justify>What is often characteristic of new and emerging technologies and their associated governance measures is that they show a higher degree of scientific uncertainty, and appear to cross various borders. This is what Zhang et al. (2011) have pointed out to be especially true for synthetic biology as it puts an even stronger emphasis on these governance challenges for modern science. The main reasons for this is that, on the one hand, the uncertainty comes from the lack of predictability and awareness of increasing <i>non-knowing </i> with regard to the technology, and on the other hand, the cross-borderness related to various interconnecting aspects of synthetic biology (Zhang et al 2011).</p> |
- | <br>At the core of assessing synthetic biology as a discipline which involves scientific uncertainty is the premise that this new and emerging technology is still at the beginning stage of trying to understand how things actually work and how they will affect society. This is a factor that needs to be taken into account since it implies that talking about synthetic biology in terms of risk is still something that is out of reach as risks are about having the necessary knowledge and tools to actually determine how great the risk is. To do this for synthetic biology cannot yet be done with full certainty considering that its scientific practices possess certain properties that make the calculability of risks considerably more difficult. Making a prediction of how a synthetic microorganism would behave does not become more manageable even if a new genetic circuit and its parts are well understood. Unforeseen and unintended consequences to health and the environment thus go broader than the concept of risk which cannot even be controlled by research institutions with considerable legitimacy. The issue of governance for synthetic biology therefore is more about ‘regulating the implications of uncertainty, ignorance and indeterminacy’, rather than regulating what can be known through risk management assessments (Zhang et al. 2011: 8-9). | + | <br><p align=justify>At the core of assessing synthetic biology as a discipline which involves scientific uncertainty is the premise that this new and emerging technology is still at the beginning stage of trying to understand how things actually work and how they will affect society. This is a factor that needs to be taken into account since it implies that talking about synthetic biology in terms of risk is still something that is out of reach as risks are about having the necessary knowledge and tools to actually determine how great the risk is. To do this for synthetic biology cannot yet be done with full certainty considering that its scientific practices possess certain properties that make the calculability of risks considerably more difficult. Making a prediction of how a synthetic microorganism would behave does not become more manageable even if a new genetic circuit and its parts are well understood. Unforeseen and unintended consequences to health and the environment thus go broader than the concept of risk which cannot even be controlled by research institutions with considerable legitimacy. The issue of governance for synthetic biology therefore is more about ‘regulating the implications of uncertainty, ignorance and indeterminacy’, rather than regulating what can be known through risk management assessments (Zhang et al. 2011: 8-9).</p> |
- | <br>The uncertainty challenge becomes even greater when synthetic biology is discussed in terms of dual-use implications, where a civilian use of the technology can be translated into military ends. In the life sciences, risk as such already poses a difficult question as self-replicating qualities of biological systems mean that it becomes more difficult to document the exchange of various genetic material. This places the threshold to create biological weaponry at a slightly lower level considering that it becomes a challenge to trace the source of production. Moreover, as the applications of biotechnology becomes more widespread, the scale at which policy mechanisms need to hold perpetrators accountable become difficult to oversee. Furthermore, in order to acquire the skills to practice synthetic biology, one has to overcome a considerable degree of so-called tacit knowledge inherent to the scientific process. A large and heterogeneous group of specialists are required to cooperate and share their skills and experiences in order to make knowledge production possible. This experience is essential to the process because the long time that can be devoted to practice eventually lets the acquired skill be based on intuition rather than a clear set of steps that need to be taken. Such intricate relation between humans and non-humans illustrate how the practicing synthetic biology can be described as a socio-technical assemblage of knowledge production (Tucker 2011). | + | <br><p align=justify>The uncertainty challenge becomes even greater when synthetic biology is discussed in terms of dual-use implications, where a civilian use of the technology can be translated into military ends. In the life sciences, risk as such already poses a difficult question as self-replicating qualities of biological systems mean that it becomes more difficult to document the exchange of various genetic material. This places the threshold to create biological weaponry at a slightly lower level considering that it becomes a challenge to trace the source of production. Moreover, as the applications of biotechnology becomes more widespread, the scale at which policy mechanisms need to hold perpetrators accountable become difficult to oversee. Furthermore, in order to acquire the skills to practice synthetic biology, one has to overcome a considerable degree of so-called tacit knowledge inherent to the scientific process. A large and heterogeneous group of specialists are required to cooperate and share their skills and experiences in order to make knowledge production possible. This experience is essential to the process because the long time that can be devoted to practice eventually lets the acquired skill be based on intuition rather than a clear set of steps that need to be taken. Such intricate relation between humans and non-humans illustrate how the practicing synthetic biology can be described as a socio-technical assemblage of knowledge production (Tucker 2011).</p> |
- | <br>However, the opposite of this is also true considering that the requirement of tacit knowledge is undermined by a de-skilling trend in synthetic biology. While the former has led to the <i>black-boxing</i> of the scientific process to create synthetic microorganisms, increasingly, with a sufficient amount of basic skills, taking part in the advance of synthetic biology nowadays has ceased to be merely exclusive to a specific set of highly trained specialists (Tucker 2011). The reason for this is that the design and fabrication of genetic circuits is realized through the making of modularized components called BioBricks, which are designed and standardized so that they are readily available to different synthetic biologists, and applied for a particular function through the use of fairly basic tools in genetic engineering. Moreover, the provision of these BioBricks works via the centrally organized Registry of Standard Biological Parts. The resulting objective is one of more efficient, cheaper, and more predictable ways of doing the work, which ultimately benefits the synthetic biology community. Nevertheless, due to this modularity and de-skilling, non-experts can become sufficiently proficient and thus contribute to technological development as well (Mukunda et al. 2009; Tucker 2011). | + | <br><p align=justify>However, the opposite of this is also true considering that the requirement of tacit knowledge is undermined by a de-skilling trend in synthetic biology. While the former has led to the <i>black-boxing</i> of the scientific process to create synthetic microorganisms, increasingly, with a sufficient amount of basic skills, taking part in the advance of synthetic biology nowadays has ceased to be merely exclusive to a specific set of highly trained specialists (Tucker 2011). The reason for this is that the design and fabrication of genetic circuits is realized through the making of modularized components called BioBricks, which are designed and standardized so that they are readily available to different synthetic biologists, and applied for a particular function through the use of fairly basic tools in genetic engineering. Moreover, the provision of these BioBricks works via the centrally organized Registry of Standard Biological Parts. The resulting objective is one of more efficient, cheaper, and more predictable ways of doing the work, which ultimately benefits the synthetic biology community. Nevertheless, due to this modularity and de-skilling, non-experts can become sufficiently proficient and thus contribute to technological development as well (Mukunda et al. 2009; Tucker 2011).</p> |
- | <br>The consistency that comes with the standardization of genetic parts and modules therefore brings the dual use of synthetic biology closer to being a reality. Nevertheless, creating novel pathogens remains considerably far from what is practically possible as there are still quite a few operational difficulties left to resolve before a straight line can be drawn from de-skilling to the prevalence of acts of bioterrorism. However, vigilance remains of importance in response to do-it-yourself synthetic biology movements and how-to protocols as misuse by non-state actors, who can now have greater access, cannot be excluded as a problem (Kelle 2012; Tucker 2011). Such non-state actors certainly became more prominent in the aftermath of the Cold War since biosecurity issues were now facilitated by weakening international borders. Many new actors from various geographical levels of organisation emerged during this time in response to this development, which in turn undermined the authority of governments in favour of an emerging governance structure. Especially after the anthrax attacks of 2001, biosecurity gained prominence as an issue through such initiatives as a verification protocol to reinforce the Biological Weapons Convention of 1972. When this eventually failed, states now had to start negotiations with non-governmental stakelholders in order to set up agreements on dual-use practices. Nevertheless, the international politics related to dual-use governance remained predominantly based on a state-centred framework (Nightingale and McLeish 2009).</p> | + | <br><p align=justify>The consistency that comes with the standardization of genetic parts and modules therefore brings the dual use of synthetic biology closer to being a reality. Nevertheless, creating novel pathogens remains considerably far from what is practically possible as there are still quite a few operational difficulties left to resolve before a straight line can be drawn from de-skilling to the prevalence of acts of bioterrorism. However, vigilance remains of importance in response to do-it-yourself synthetic biology movements and how-to protocols as misuse by non-state actors, who can now have greater access, cannot be excluded as a problem (Kelle 2012; Tucker 2011). Such non-state actors certainly became more prominent in the aftermath of the Cold War since biosecurity issues were now facilitated by weakening international borders. Many new actors from various geographical levels of organisation emerged during this time in response to this development, which in turn undermined the authority of governments in favour of an emerging governance structure. Especially after the anthrax attacks of 2001, biosecurity gained prominence as an issue through such initiatives as a verification protocol to reinforce the Biological Weapons Convention of 1972. When this eventually failed, states now had to start negotiations with non-governmental stakelholders in order to set up agreements on dual-use practices. Nevertheless, the international politics related to dual-use governance remained predominantly based on a state-centred framework (Nightingale and McLeish 2009).</p> |
<h4>Opposing Paradigms in the Face of Environmental Decline</h4> | <h4>Opposing Paradigms in the Face of Environmental Decline</h4> | ||
<br><p align=justify>Cohen, late-modernity, scientific rationality, ecological modernisation theory, risk society theory, technological-environmental risk and development, subpolitics, capitalist society, cost-effectiveness, environmental reform, industrialisation, reductionism, non-governmental actors, </p> | <br><p align=justify>Cohen, late-modernity, scientific rationality, ecological modernisation theory, risk society theory, technological-environmental risk and development, subpolitics, capitalist society, cost-effectiveness, environmental reform, industrialisation, reductionism, non-governmental actors, </p> |
Revision as of 19:02, 21 September 2014
Sociological Imaginations
Human Practice Team
Theoretical and Conceptual Framework
- Chapter 1: Introduction
- Chapter 2: Theoretical and Conceptual Framework
- Chapter 3: Methodology
- Chapter 4: Synthetic Biology for Environmental Reform
- Chapter 5: UCL iGEM 2014 in the Risk Society
- Chapter 6: Transcending Multifaceted Borders
- Chapter 7: The Playful Professional and Sustainable Governance
- List of References
The Governance Challenges of Synthetic Biology
What is often characteristic of new and emerging technologies and their associated governance measures is that they show a higher degree of scientific uncertainty, and appear to cross various borders. This is what Zhang et al. (2011) have pointed out to be especially true for synthetic biology as it puts an even stronger emphasis on these governance challenges for modern science. The main reasons for this is that, on the one hand, the uncertainty comes from the lack of predictability and awareness of increasing non-knowing with regard to the technology, and on the other hand, the cross-borderness related to various interconnecting aspects of synthetic biology (Zhang et al 2011).
At the core of assessing synthetic biology as a discipline which involves scientific uncertainty is the premise that this new and emerging technology is still at the beginning stage of trying to understand how things actually work and how they will affect society. This is a factor that needs to be taken into account since it implies that talking about synthetic biology in terms of risk is still something that is out of reach as risks are about having the necessary knowledge and tools to actually determine how great the risk is. To do this for synthetic biology cannot yet be done with full certainty considering that its scientific practices possess certain properties that make the calculability of risks considerably more difficult. Making a prediction of how a synthetic microorganism would behave does not become more manageable even if a new genetic circuit and its parts are well understood. Unforeseen and unintended consequences to health and the environment thus go broader than the concept of risk which cannot even be controlled by research institutions with considerable legitimacy. The issue of governance for synthetic biology therefore is more about ‘regulating the implications of uncertainty, ignorance and indeterminacy’, rather than regulating what can be known through risk management assessments (Zhang et al. 2011: 8-9).
The uncertainty challenge becomes even greater when synthetic biology is discussed in terms of dual-use implications, where a civilian use of the technology can be translated into military ends. In the life sciences, risk as such already poses a difficult question as self-replicating qualities of biological systems mean that it becomes more difficult to document the exchange of various genetic material. This places the threshold to create biological weaponry at a slightly lower level considering that it becomes a challenge to trace the source of production. Moreover, as the applications of biotechnology becomes more widespread, the scale at which policy mechanisms need to hold perpetrators accountable become difficult to oversee. Furthermore, in order to acquire the skills to practice synthetic biology, one has to overcome a considerable degree of so-called tacit knowledge inherent to the scientific process. A large and heterogeneous group of specialists are required to cooperate and share their skills and experiences in order to make knowledge production possible. This experience is essential to the process because the long time that can be devoted to practice eventually lets the acquired skill be based on intuition rather than a clear set of steps that need to be taken. Such intricate relation between humans and non-humans illustrate how the practicing synthetic biology can be described as a socio-technical assemblage of knowledge production (Tucker 2011).
However, the opposite of this is also true considering that the requirement of tacit knowledge is undermined by a de-skilling trend in synthetic biology. While the former has led to the black-boxing of the scientific process to create synthetic microorganisms, increasingly, with a sufficient amount of basic skills, taking part in the advance of synthetic biology nowadays has ceased to be merely exclusive to a specific set of highly trained specialists (Tucker 2011). The reason for this is that the design and fabrication of genetic circuits is realized through the making of modularized components called BioBricks, which are designed and standardized so that they are readily available to different synthetic biologists, and applied for a particular function through the use of fairly basic tools in genetic engineering. Moreover, the provision of these BioBricks works via the centrally organized Registry of Standard Biological Parts. The resulting objective is one of more efficient, cheaper, and more predictable ways of doing the work, which ultimately benefits the synthetic biology community. Nevertheless, due to this modularity and de-skilling, non-experts can become sufficiently proficient and thus contribute to technological development as well (Mukunda et al. 2009; Tucker 2011).
The consistency that comes with the standardization of genetic parts and modules therefore brings the dual use of synthetic biology closer to being a reality. Nevertheless, creating novel pathogens remains considerably far from what is practically possible as there are still quite a few operational difficulties left to resolve before a straight line can be drawn from de-skilling to the prevalence of acts of bioterrorism. However, vigilance remains of importance in response to do-it-yourself synthetic biology movements and how-to protocols as misuse by non-state actors, who can now have greater access, cannot be excluded as a problem (Kelle 2012; Tucker 2011). Such non-state actors certainly became more prominent in the aftermath of the Cold War since biosecurity issues were now facilitated by weakening international borders. Many new actors from various geographical levels of organisation emerged during this time in response to this development, which in turn undermined the authority of governments in favour of an emerging governance structure. Especially after the anthrax attacks of 2001, biosecurity gained prominence as an issue through such initiatives as a verification protocol to reinforce the Biological Weapons Convention of 1972. When this eventually failed, states now had to start negotiations with non-governmental stakelholders in order to set up agreements on dual-use practices. Nevertheless, the international politics related to dual-use governance remained predominantly based on a state-centred framework (Nightingale and McLeish 2009).
Opposing Paradigms in the Face of Environmental Decline
Cohen, late-modernity, scientific rationality, ecological modernisation theory, risk society theory, technological-environmental risk and development, subpolitics, capitalist society, cost-effectiveness, environmental reform, industrialisation, reductionism, non-governmental actors,